

Agreement No. CE 2/2025 (EP)
Environmental Team for
Environmental Monitoring and
Audit Works for San Tin
Technopole Phase 1
Development (2025 – 2031) –
Design and Construction

Monthly EM&A Report for October 2025

PREPARED FOR

Civil Engineering and Development Department

DATE 13 November 2025

REFERENCE 0785165

SIGNATURE PAGE

Agreement No. CE 2/2025 (EP) Environmental Team for Environmental Monitoring and Audit Works for San Tin Technopole Phase 1 Development (2025 – 2031) – Design and Construction

Monthly EM&A Report for October 2025

0785165

Mr Raymond Chow

Consulting Partner

ERM-Hong Kong, Limited 2507, 25/F, One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong T +852 2271 3000

© Copyright 2025 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

San Tin Technopole Phase I Development (2025 – 2031) – Design and Construction

Environmental Certification Sheet for Environmental Permit No. EP-640/2024

Reference Document/Plan

Document/Plan to be Certified: Monthly EM&A Report for October 2025

Date: 13 November 2025

Reference EP Condition

Environmental Permit Condition: Condition 3.4

The Permit Holder shall submit 1 hard copy and 1 electronic copy of Monthly EM&A Reports for the construction stage of the Project to the Director, within 10 working days after the end of the reporting month. The submissions shall be certified by the ET Leader and verified by the IEC as having complied with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the Monthly EM&A Reports shall be provided upon request by the Director.

ET Certification

I hereby certify that the above referenced document/plan complies with the above referenced condition of EP-640/2024.

Terence Fong Environmental Team Leader ERM-Hong Kong, Limited Date: 14 November 2025

San Tin Technopole Phase I Development (2025 – 2031) – Design and Construction

Environmental Certification Sheet for Environmental Permit No. EP-641/2024

Reference Document/Plan

Document/Plan to be Certified: Monthly EM&A Report for October 2025

Date: 13 November 2025

Reference EP Condition

Environmental Permit Condition: Condition 3.4

The Permit Holder shall submit 1 hard copy and 1 electronic copy of Monthly EM&A Reports for the construction stage of the Project to the Director, within 10 working days after the end of the reporting month. The submissions shall be certified by the ET Leader and verified by the IEC as having complied with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of the Monthly EM&A Reports shall be provided upon request by the Director.

ET Certification

I hereby certify that the above referenced document/plan complies with the above referenced condition of EP-641/2024.

Terence Fong Environmental Team Leader ERM-Hong Kong, Limited Date:

14 November 2025

Attn: Mr LAI Cheuk Ho (Project Team Leader (North))

Civil Engineering and Development Department North Development Office Unit 2813, Level 28, Tower I, Metroplaza 223 Hing Fong Road, Kwai Fong, N.T., Hong Kong

Your Reference

Agreement No. CE 1/2025 (EP) Independent Environmental Checker for Environmental Monitoring and Audit Works for San Tin Technopole Phase 1 Development (2025 - 2031) – Investigation

Our Reference EC/TC/DC/jc/601100653/ L055

<u>Verification of Monthly EM&A Report for October 2025 under EP-640/2024</u>

14 November 2025

Mott MacDonald 3/F Manulife Place 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757

mottmac.hk

Dear Sir,

We refer to the Monthly EM&A Report for October 2025 that was provided by the Environmental Team via email on 14 November 2025 and certified by the Environmental Team Leader appointed under Condition 2.1 of the Environmental Permit No. EP-640/2024.

We would like to inform you that we have no adverse comment on the captioned submission. Therefore, we hereby verify the abovementioned submission in accordance with EP Condition 3.4.

Should you have any queries or require any further information, please contact the undersigned at 2828 5967.

Yours faithfully

for MOTT MACDONALD HONG KONG LIMITED

Ir Thomas Chan

Independent Environmental Checker

Thum Clean

+85228285967

thomas.chan@mottmac.com

Attn: Mr LAI Cheuk Ho (Project Team Leader (North))

Civil Engineering and Development Department North Development Office Unit 2813, Level 28, Tower I, Metroplaza 223 Hing Fong Road, Kwai Fong, N.T., Hong Kong

Your Reference

Agreement No. CE 1/2025 (EP) Independent Environmental Checker for Environmental Monitoring and Audit Works for San Tin Technopole Phase 1 Development (2025 - 2031) – Investigation

Our Reference EC/TC/DC/jc/601100653/ L056

<u>Verification of Monthly EM&A Report for October 2025 under EP-641/2024</u>

14 November 2025

Mott MacDonald 3/F Manulife Place 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

Dear Sir,

T +852 2828 5757 mottmac.hk We refer to the Monthly EM&A Report for October 2025 that was provided by the Environmental Team via email on 14 November 2025 and certified by the Environmental Team Leader appointed under Condition 2.1 of the Environmental Permit No. EP-641/2024.

We would like to inform you that we have no adverse comment on the captioned submission. Therefore, we hereby verify the abovementioned submission in accordance with EP Condition 3.4.

Should you have any queries or require any further information, please contact the undersigned at 2828 5967.

Yours faithfully

for MOTT MACDONALD HONG KONG LIMITED

Ir Thomas Chan

Independent Environmental Checker

Thum Clean

+85228285967

thomas.chan@mottmac.com

CONTENTS

EXE	CUTIVE SUMMARY	1
BRE	ACHES OF ACTION AND LIMIT LEVELS FOR AIR QUALITY	1
BRE	ACHES OF ACTION AND LIMIT LEVELS FOR NOISE	1
BRE	ACHES OF ACTION AND LIMIT LEVELS FOR WATER QUALITY	1
ENV	IRONMENTAL COMPLAINTS, NON-COMPLIANCE & SUMMONS	2
REP	ORTING CHANGE	2
KEY	ISSUES FOR THE NEXT THREE MONTHS	2
1.	INTRODUCTION	3
1.1	BACKGROUND	3
1.2	SCOPE OF THE EM&A REPORT	4
1.3	ORGANISATION STRUCTURE	4
1.4	SUMMARY OF CONSTRUCTION WORKS	5
1.5	SUMMARY OF EM&A PROGRAMME REQUIREMENTS	6
1.6	STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENT	8
2.	MONITORING RESULTS	9
2.1	AIR QUALITY MONITORING	9
	2.1.1 Monitoring Requirements and Equipment 2.1.2 Results and Observations	9
2.2	NOISE MONITORING	11
	2.2.1 Monitoring Requirements and Equipment2.2.2 Monitoring Schedule for the Reporting Month	11 12
2.3	2.2.3 Results and Observations WATER QUALITY MONITORING	12 13
	2.3.1 Monitoring Requirements and Equipment	13
	2.3.2 Monitoring Schedule for the Reporting Month	15
2.4	2.3.3 Results and Observations EM&A SITE INSPECTION	16 16
2.5	WASTE MANAGEMENT	18
2.6	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	20
2.7	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS	20
3.	FUTURE KEY ISSUES	21
3.1	CONSTRUCTION PROGRAMME FOR THE COMING THREE MONTHS	21
3.2	MONITORING SCHEDULE FOR THE FUTURE 3 MONTHS	22
4.	CONCLUSION AND RECOMMENDATIONS	23
ANN	IEX A PROJECT ORGANISATION	
ANN	IEX B CONSTRUCTION PROGRAMME	

ANNEX C	ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT
ANNEX D1	CALIBRATION CERTIFICATES (ONSITE SENSORS)
ANNEX D2	CALIBRATION CERTIFICATES (TRANSFER STANDARDS)
ANNEX D3	AIR QUALITY MONITORING RESULTS
ANNEX D4	WIND CONDITIONS
ANNEX D5	EVENT AND ACTION PLAN FOR AIR QUALITY MONITORING
ANNEX E1	CALIBRATION CERTIFICATES (SOUND LEVEL METERS AND ACOUSTIC CALIBRATORS)
ANNEX E2	NOISE MONITORING SCHEDULE DURING REPORTING PERIOD
ANNEX E3	NOISE MONITORING RESULTS
ANNEX E4	EVENT AND ACTION PLAN FOR NOISE MONITORING
ANNEX F1	CALIBRATION CERTIFICATES OF WATER QUALITY MONITORING EQUIPMENT
ANNEX F2	WATER QUALITY MONITORING SCHEDULE DURING REPORTING PERIOD
ANNEX F3	WATER QUALITY MONITORING RESULTS
ANNEX F4	EVENT AND ACTION PLAN FOR WATER QUALITY MONITORING
ANNEX G	WASTE FLOW TABLE
ANNEX H	ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE
ANNEX I	TENTATIVE SCHEDULES OF ENVIRONMENTAL MONITORING FOR FUTURE 3 MONTHS
ANNEX J	STATUS OF EP SUBMISSIONS

LIST OF TAE	BLES	
TABLE 1.1	SUMMARY OF ENVIRONMENTAL PERMITS UNDER THE PROJECT AND THE RESPECTIVE ACTIVE WORKS CONTRACTS	3
TABLE 1.2	CONTACT INFORMATION OF KEY PERSONNEL	4
TABLE 1.3	MAJOR CONSRUCTION WORKS IN THE REPORTING PERIOD	5
TABLE 1.4	SUMMARY OF STATUS FOR THE ENVIRONMENTAL ASPECTS UNDER THE EM&A MANUAL	6
TABLE 2.1	ACTION AND LIMIT LEVELS FOR AIR QUALITY (DUST)	9
TABLE 2.2	AIR QUALITY MONITORING DETAILS	9
TABLE 2.3	SUMMARY OF 1-HOUR RSP MONITORING RESULTS IN THE REPORTING PERIOD	10
TABLE 2.4	SUMMARY OF 24-HOUR ROLLING AVERAGE RSP MONITORING RESULTS IN THE REPORTING PERIOD	10
TABLE 2.5	SUMMARY OF 24-HOUR ROLLING AVERAGE FSP MONITORING RESULTS IN THE REPORTING PERIOD	10
TABLE 2.6	DETAILS OF EXCEEDANCES RECORDED FOR AIR QUALITY MONITORING	11
TABLE 2.7	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE	11
TABLE 2.8	NOISE MONITORING DETAILS	12
TABLE 2.9	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS IN THE REPORTING PERIOD	12
TABLE 2.10	CALCULATED ACTION AND LIMIT LEVELS FOR WATER QUALITY	13
TABLE 2.11	LOCATIONS OF IMPACT WATER QUALITY MONITORING STATIONS AND MONITOR REQUIREMENTS	ING 14
TABLE 2.12	WATER QUALITY MONITORING EQUIPMENT	15
TABLE 2.13	DETAILS OF EXCEEDANCES RECORDED FOR WATER QUALITY MONITORING	16
TABLE 2.14	KEY OBSERVATIONS IDENTIFIED DURING THE SITE INSPECTION IN THIS REPORTING MONTH	16
TABLE 2.15	QUANTITIES OF WASTE GENERATED IN REPORTING PERIOD	19
TABLE 3.1	MAJOR CONSTRUCTION WORKS IN THE NEXT THREE MONTHS	21
LIST OF FIG	URES	
FIGURE 1.1	LOCATION OF PROJECT	
FIGURE 2.1	LOCATIONS OF AIR QUALITY MONITORING STATIONS	
FIGURE 2.2	LOCATIONS OF NOISE MONTIORING STATIONS	
FIGURE 2.3	LOCATIONS OF WATER QUALITY MONITORING STATIONS	

EXECUTIVE SUMMARY

ND/2024/10

This is the Monthly Environmental Monitoring and Audit (EM&A) Report presenting the EM&A works during the period of October 2025 for the San Tin Technopole Phase 1 Development (the Project) in accordance with the EM&A Manual. Two (2) works contracts, Package 1 Contract 1 (ND/2024/09) and Package 2 Contract 1 (ND/2024/10), are active in this reporting period.

- The construction of ND/2024/09 commenced on 29 September 2025; and
- The construction of ND/2024/10 commenced on 18 September 2025.

A summary of EM&A activities conducted in the reporting period is listed below:

Air Quality Monitoring	Continuous impact monitoring	
Noise Monitoring		
• ND/2024/09	4 sessions	
• ND/2024/10	4 sessions	
Water Quality Monitoring		
• ND/2024/09	13 sessions	
• ND/2024/10	13 sessions	
Environmental Site Inspection		
• ND/2024/09	4 sessions	

Environmental site audits, including weekly site inspections of construction works by representatives from ET, Engineer and Contractor; and joint site inspection with Independent Environmental Checker (IEC) were conducted during the reporting period. Based on the audit results and the observation for the reporting period, environmental pollution control and mitigation measures for the Project were properly implemented.

5 sessions

BREACHES OF ACTION AND LIMIT LEVELS FOR AIR QUALITY

One (1) Action Level exceedance was recorded for impact air quality monitoring in the reporting period. Relevant investigation and follow-up action were conducted according to the EM&A programme. The exceedance was considered not related to the Project after investigation.

BREACHES OF ACTION AND LIMIT LEVELS FOR NOISE

No exceedance of Action and Limit Levels was recorded for impact noise monitoring in the reporting period.

BREACHES OF ACTION AND LIMIT LEVELS FOR WATER QUALITY

Two (2) Limit Level exceedances were recorded for impact water quality monitoring in the reporting period. Relevant investigations and follow-up actions were conducted according to the EM&A programme. The exceedances were considered not related to the Project after investigation.

ENVIRONMENTAL COMPLAINTS, NON-COMPLIANCE & SUMMONS

There was no environmental complaint, notification of summons or prosecution recorded in the reporting period.

REPORTING CHANGE

There was no reporting change in the reporting period.

KEY ISSUES FOR THE NEXT THREE MONTHS

Potential environmental impacts arising from the upcoming construction activities in the next three months are mainly associated with dust emission, noise from plant operation, handling and storage of C&D materials generated from construction activities, efficiency of wastewater and drainage management and tree protection. The ET will keep track on the construction works to confirm compliance with environmental requirements and the proper implementation of all necessary mitigation measures.

1. INTRODUCTION

1.1 BACKGROUND

San Tin Technopole Phase 1 Development ("the Project") mainly covers innovation & technology (I&T) land parcels to the north of San Tin Highway/Fanling Highway, some residential land to the south and the key infrastructure areas with road connections. The construction of the Project will be delivered under various works contracts and its scope of works comprises the following elements:

- Site formation of land for innovation and technology development, housing, community, commercial and other developments;
- Engineering infrastructure works including but not limited to roadworks, drainage, sewerage, waterworks, pumping stations, fresh water and flushing water service reservoirs, Common Utility Tunnel (CUT) and other associated buildings / structures / E&M systems for the Project; and
- Landscaping works;

The Environmental Impact Assessment (EIA) Report for the San Tin/Lok Ma Chau Development Node (STLMC DN) (Register No. AEIAR-261/2024) was approved on 17 May 2024. Two (2) works contracts, ND/2024/09 and ND/2024/10, are active in this reporting period. The construction of ND/2024/09 commenced on 29 September 2025, and the construction of ND/2024/10 commenced on 18 September 2025. The location of the Project, including the associated works areas of each active works contract is shown in **Figure 1.1**. The relevant Environmental Permits (EPs) under the Project and the respective works contracts are summarized in **Table 1.1**.

TABLE 1.1 SUMMARY OF ENVIRONMENTAL PERMITS UNDER THE PROJECT AND THE RESPECTIVE ACTIVE WORKS CONTRACTS

EP	Designated Project	Work Contracts	
		ND/2024/09	ND/2024/10
EP-640/2024	San Tin / Lok Ma Chau Water Reclamation	✓	
	Plant		
EP-641/2024	San Tin / Lok Ma Chau Effluent Polishing	√	
	Plant		
EP-664/2025	Revitalisation of San Tin Eastern Main		
	Drainage Channel		
EP-665/2025	Recreational Development ("Open Space")		
	along San Tin Western Main Drainage		
	Channel and at Mai Po Lung Village within		
	Deep Bay Buffer Zone 2		
EP-666/2025	New Primary Distributor Road (Road P1)		
	and District Distributor Roads (Roads D1,		
	D2, D3, D4, D5 and D6) for San Tin / Lok		
	Ma Chau Development Node		

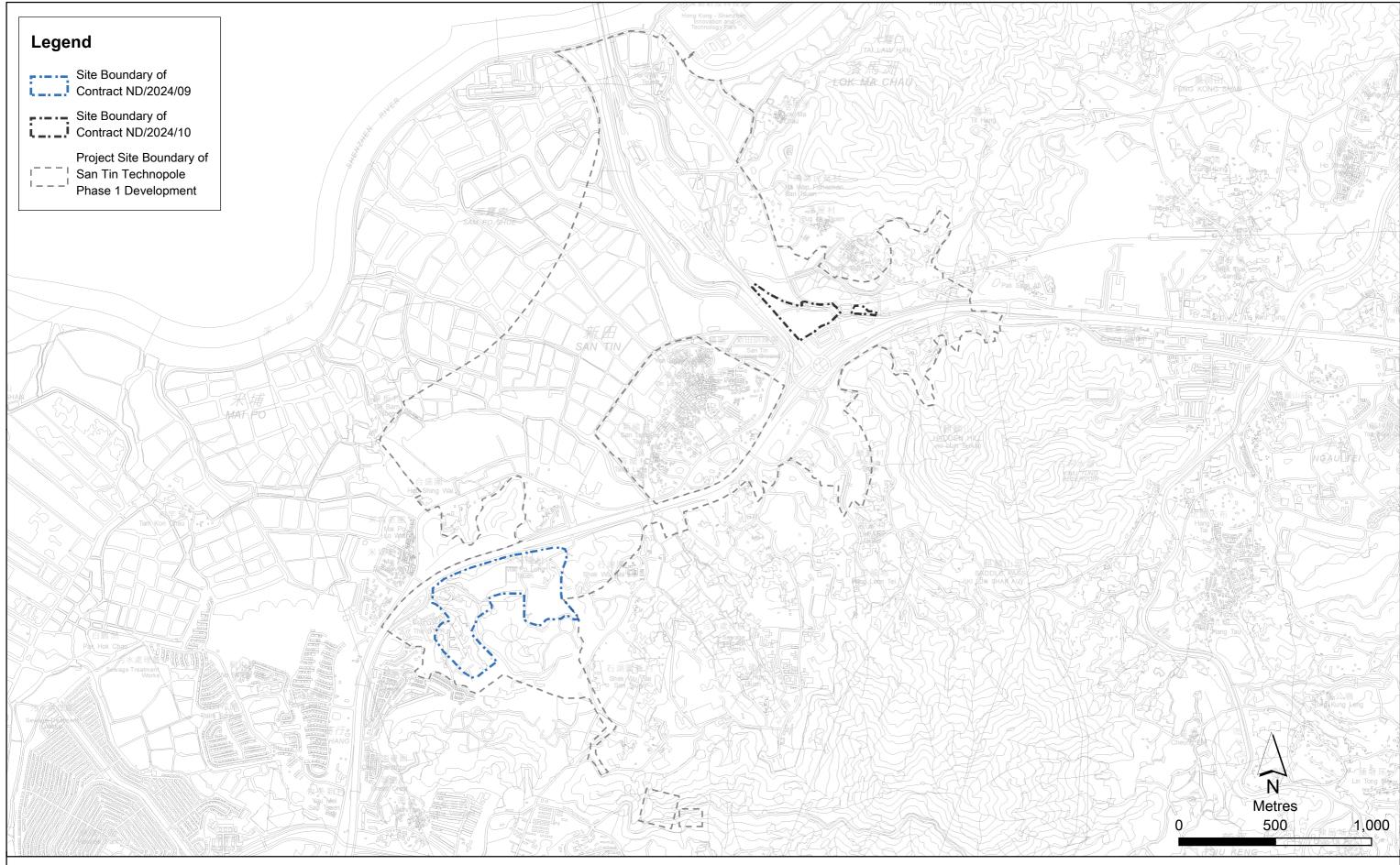


Figure 1.1

Location of Project

ERM-Hong Kong, Limited (ERM) is commissioned to undertake the role of Environmental Team (ET) for the Project in accordance with the requirements specified in the Environmental Permit(s), the Environmental Monitoring and Audit (EM&A) Manual, the EIA Report of the STLMC DN project and other relevant statutory requirements.

1.2 SCOPE OF THE EM&A REPORT

This is the Monthly EM&A Report for the Project which summarises the key findings of the EM&A programme during the reporting period of October 2025.

1.3 ORGANISATION STRUCTURE

The organisation structure of the Project is shown in **Annex A**. The key personnel contact names and details are summarised in **Table 1.2** below.

TABLE 1.2 CONTACT INFORMATION OF KEY PERSONNEL

Party	Position	Name	Telephone
Environmental Team (ET)	ET Leader	Terence Fong	2271 3156
(ERM-Hong Kong, Limited)	ET Leader Representative	Harris Wong	2271 3182
	(EP-640/2024)		
	ET Leader Representative	Harmony Chuh	2271 3273
	(EP-641/2024)		
Independent Environmental	IEC	Thomas Chan	2828 5967
Checker (IEC)	IEC Representative	Sunny Chan	2828 5962
(Mott MacDonald Hong	(EP-640/2024)		
Kong Limited)	IEC Representative	Jay Chua	2828 5710
	(EP-641/2024)		
Contract No. ND/2024/09			
Civil Engineering and	Senior Engineer	Vicky W.K. Yuen	3426 2590
Development Department	Engineer	Stanley C.Y. Hung	3152 3564
Engineer's Representative	Chief Resident Engineer	Albert Yu	8493 0329
(ER)	Senior Resident Engineer	Timonthy Chan	8494 6981
(AECOM - Halcrow Joint	Senior Resident Engineer	Tony Chan	8491 4870
Venture)			
Contractor	Construction Manager	K. K. Yuen	9498 1213
(CR15G - Tung Lee Joint	Site Agent	Wilson Chan	9656 8865
Venture)	Sub Agent	Paul So	5989 0614
	Environmental Officer	Frank Liu	6900 3526
	Environmental Supervisor	Johnny Kam	6178 4786
Contract No. ND/2024/10			
Civil Engineering and	Senior Engineer	Albert S. Lam	3547 1635
Development Department	Engineer	Patrick P.L. Wan	3152 3472

Engineer's Representative (ER)	Senior Resident Engineer	Raymond Cheung	2908 4924
(Arup - Binnies Joint			
Venture)			
Contractor	Senior Project Manager	Ma Kin Man	9552 1734
(Kuly Construction &	Site Agent	Tang Wing Kai	9300 7037
Engineering Company	Environmental Officer	Brenda Yiu	9346 3966
Limited)			

1.4 SUMMARY OF CONSTRUCTION WORKS

As informed by the Contractor, details of the major construction works carried out in this reporting period are listed in **Table 1.3**. The construction programme is shown in **Annex B**.

TABLE 1.3 MAJOR CONSRUCTION WORKS IN THE REPORTING PERIOD

Construction Works Kon Tours			
Construction Works	Key Issues	Key Mitigation Measures	
Undertaken			
Contract No. ND/2024/09			
 Topographic Survey 	Dust emission	Good site practices	
 Ground Investigation 	Handling and storage of	Regular water spraying on	
Work	construction and demolition	stockpiles	
• Wetland Enhancement	(C&D) materials	Provide tarpaulin sheets	
Works	Noise from use of Powered	coverage on stockpiles and	
 Soldier Pile Wall 	Mechanical Equipment	reuse of C&D materials as far	
Construction	(PME)	as practicable	
Tree Felling	Emission of dark smoke	Use of QPME and noise	
Demolition Works	from PMEs	barrier/acoustic	
Site Formation Works	Proper discharge of	mat/enclosure	
	wastewater	Regular maintenance of PMEs	
	Prevention and proper	Implementation of	
	discharge of surface runoff	wastewater and drainage	
	Tree protection	management	
	·	Retain and protect all existing	
		trees and vegetation within	
		the study area which are not	
		directly affected by the works	
Contract No. ND/2024/10			
Ground Investigation	Dust emission	Good site practices	
Work	Handling and storage of	 Regular water spraying on 	
Construction for Box	C&D materials		
		stockpiles	
Culvert	Noise from use of PME	Provide tarpaulin sheets	
Tree Felling	Emission of dark smoke	coverage on stockpiles and	
	from PMEs		

- Proper discharge of wastewater
- Prevention and proper discharge of surface runoff
- Tree protection

- reuse of C&D materials as far as practicable
- Use of Quality Powered Mechanical Equipment (QPME) and noise barrier/acoustic mat/enclosure
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management
- Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

1.5 SUMMARY OF EM&A PROGRAMME REQUIREMENTS

The status for all environmental aspects is presented in **Table 1.4**. The EM&A programme requirements remained unchanged during the reporting period.

TABLE 1.4 SUMMARY OF STATUS FOR THE ENVIRONMENTAL ASPECTS UNDER THE EM&A MANUAL

Parameters	Status
Air Quality	
Impact Monitoring	On-going for Contract Nos. ND/2024/09 and
	ND/2024/10, monitoring conducted continuously
Noise	
Baseline Monitoring	The results of baseline noise monitoring for
	Contract Nos. ND/2024/09 and ND/2024/10
	were reported in Baseline Monitoring Report and
	submitted to EPD under the EM&A Manual
	Section 16.3 and EP Condition 3.3.
Impact Monitoring	On-going for Contract Nos. ND/2024/09 and
	ND/2024/10, monitoring conducted once per
	week
Water Quality	
Baseline Monitoring	The results of baseline water quality monitoring
	for Contract Nos. ND/2024/09 and ND/2024/10
	were reported in Baseline Monitoring Report and
	submitted to EPD under the EM&A Manual
	Section 16.3 and EP Condition 3.3.

Impact Monitoring	On-going for Contract Nos. ND/2024/09 and ND/2024/10, monitoring conducted 3 days per week
Waste Management	
Waste Monitoring	On-going
Land Contamination	
Contamination Assessment Plan (CAP),	On-going
Remediation Action Plan (RAP) and	
Remediation Report (RR)	
Ecology	
Wetland Compensation Monitoring	To be conducted when construction activities occur within 400m from the contiguous pond / wetland habitats on the northern portion of the
Night Roost Monitoring	Project area. Pre-construction Night Roost Survey commenced in September 2025 and on-going at the original
	roosting sites until commencement of tree felling works. Upon the completion of re-provision of roosting
	substratum, night roost monitoring to be conducted monthly during dry season at the reprovision site.
Egretry Monitoring	To be conducted monthly during breeding season (between March and early September).
Flight Corridor Monitoring	To be conducted when construction activities occur within this flight corridor.
Woodland Compensation Monitoring	To be conducted after completion of compensatory planting.
Post-transplantation / Post-seedling Planting	To be conducted after the transplantation /
Monitoring of Flora Species of Conservation Importance	seedling planting.
Post-translocation Monitoring of Fauna Species of Conservation Importance	To be conducted after the translocation.
Pre-construction Site Check and Nest Control	To be conducted in breeding season (March to July). The associated nest control measures to be conducted in non-breeding season (August to February) after pre-construction survey.
Pre-construction Site Check for Eurasian Otter	To be conducted prior to the commencement of construction activities.
Wildlife Corridor Monitoring	To be conducted upon establishment of the wildlife corridors.

Site Environmental Audit	
Regular Site Inspection	On-going
Environmental Log Book	On-going

Taking into account the construction works, impact monitoring of air quality, noise, water quality and waste management were carried out in the reporting period. The monitoring schedule of noise and water quality are provided in **Annex E2** and **Annex F2** respectively.

The EM&A programme also involved environmental site inspections and related auditing conducted by the ET for checking the implementation of the required environmental mitigation measures recommended in the approved EIA Report and relevant EP submissions. The relevant EP submissions are listed in **Annex J**.

1.6 STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENT

The environmental licenses and permits, including EP, discharge license under Water Pollution Control Ordinance, registration as chemical waste producer, construction noise permit and specified processes license, which were valid in the reporting period are presented in **Annex C**. No non-compliance with environmental statutory requirements was recorded.

MONITORING RESULTS

2.1 AIR QUALITY MONITORING

2.1.1 MONITORING REQUIREMENTS AND EQUIPMENT

According to the EM&A Manual of the Project, impact air quality monitoring in terms of 1-hour average Respirable Suspended Particulate (RSP), 24-hour rolling average RSP and 24-hour rolling average Fine Suspended Particulate (FSP) concentrations, was conducted continuously with air sensors. The results of these monitoring parameters are compared with the corresponding Action and Limit levels listed in **Table 2.1**.

TABLE 2.1 ACTION AND LIMIT LEVELS FOR AIR QUALITY (DUST)

Parameter	Action Level	Limit Level
1-hour RSP	150 μg/m ³	Not applicable
24-hour RSP (rolling average)	Not applicable	100 μg/m³
24-hour FSP (rolling average)	Not applicable	50 μg/m ³

The monitoring locations and air sensors used in the continuous impact air quality monitoring are summarised in **Table 2.2** and illustrated in **Figure 2.1**. Copies of the calibration certificates for the onsite air sensors at the monitoring stations and the transfer standards are presented in **Annex D1** and **Annex D2** respectively.

TABLE 2.2 AIR QUALITY MONITORING DETAILS

Monitoring Station	Relevancy to Works Contract	Location	Equipment
M03	ND/2024/10	Pun Uk Tsuen	MAS-Dust (S/N: dev9204Z250700007)
M04	ND/2024/10	Chau Tau Tsuen	MAS-Dust (S/N: dev9204Z250700006)
M06	ND/2024/09	Mai Po San Tsuen	MAS-Dust (S/N: dev9204Z250800014)
M09	ND/2024/10	Wing Ping Tsuen	MAS-Dust (S/N: dev9204Z250700005)
M11	ND/2024/09	Shek Wui Wai	MAS-Dust (S/N: dev9204Z250800013)
M13	ND/2024/09	Rolling Hills (rooftop area)	MAS-Dust (S/N: dev9204Z250800016)
M14	ND/2024/09	Rolling Hills (outside of Rolling Hills)	MAS-Dust (S/N: dev9204Z250800015)
M15a ^(a)	ND/2024/09	The STEP	MAS-Dust (S/N: dev9204Z250900019)

Note(s):

2.1.2 RESULTS AND OBSERVATIONS

The monitoring data and the graphical presentation for 1-hour RSP, 24-hour rolling average RSP and 24-hour rolling average FSP concentrations are summarised in **Table 2.3** to

⁽a) The permission from the property management office of M15a – The STEP has been granted within the reporting month. The air quality monitoring at M15a commenced on 18 October 2025.

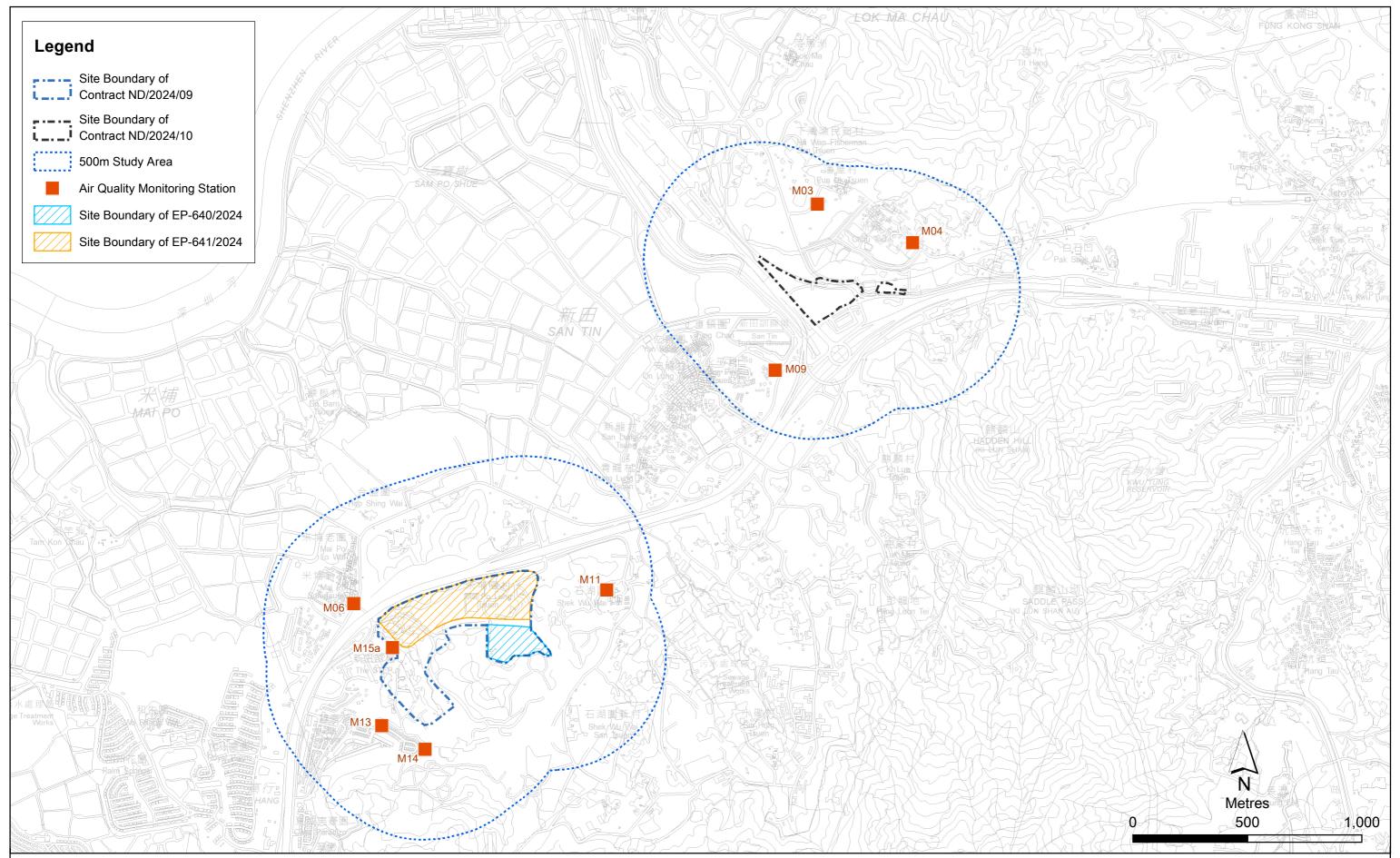


Figure 2.1

Locations of Air Quality Monitoring Stations

Table 2.5. Major dust sources in the reporting period included haul road traffic and earth moving construction activities associated with the site formation works and tree felling works. The monitoring data and the graphical presentation are provided in **Annex D3**. Wind data during the reporting period extracted from the Hong Kong Observatory (HKO)'s weather station at Wetland Park are presented in **Annex D4**.

TABLE 2.3 SUMMARY OF 1-HOUR RSP MONITORING RESULTS IN THE REPORTING PERIOD

Monitoring	Average (µg/m³)	Range (µg/m³)	Action Level	Limit Level
Station			(µg/m³)	(µg/m³)
M03	13.4	3.4 - 35.2	150	Not applicable
M04	22.2	4.5 - 44.5	150	Not applicable
M06	28.5	4.1 - 63.0	150	Not applicable
M09	19.1	5.3 - 51.0	150	Not applicable
M11	28.9	6.1 - 168.6	150	Not applicable
M13	25.8	5.8 - 84.7	150	Not applicable
M14	22.0	5.0-57.1	150	Not applicable
M15a	30.7	5.8 - 73.1	150	Not applicable

TABLE 2.4 SUMMARY OF 24-HOUR ROLLING AVERAGE RSP MONITORING RESULTS IN THE REPORTING PERIOD

Monitoring	Average (µg/m³)	Range (µg/m³)	Action Level	Limit Level
Station			(µg/m³)	(µg/m³)
M03	13.3	6.0 - 28.0	Not applicable	100
M04	22.1	8.6 - 34.2	Not applicable	100
M06	28.3	11.1 - 46.3	Not applicable	100
M09	19.0	8.1 - 36.6	Not applicable	100
M11	28.7	13.9 - 46.2	Not applicable	100
M13	25.6	10.8 - 43.0	Not applicable	100
M14	22.1	9.5 - 35.6	Not applicable	100
M15a	30.9	12.9 - 54.4	Not applicable	100

TABLE 2.5 SUMMARY OF 24-HOUR ROLLING AVERAGE FSP MONITORING RESULTS IN THE REPORTING PERIOD

Monitoring	Average (µg/m³)	Range (µg/m³)	Action Level	Limit Level
Station			(µg/m³)	(µg/m³)
M03	8.7	3.2 - 20.2	Not applicable	50
M04	12.2	4.1 - 24.0	Not applicable	50
M06	11.9	3.9 - 23.2	Not applicable	50
M09	10.2	3.8 - 22.2	Not applicable	50
M11	12.1	5.1 - 26.1	Not applicable	50
M13	10.8	3.4 - 21.8	Not applicable	50

Monitoring	Average (µg/m³)	Range (µg/m³)	Action Level	Limit Level
Station			(µg/m³)	(µg/m³)
M14	10.7	3.1 - 21.9	Not applicable	50
M15a	13.5	3.7 - 25.8	Not applicable	50

One (1) Action Level exceedance was recorded for impact air quality monitoring in the reporting period. Investigation on the exceedance was conducted and summarised in **Table 2.6** below. No Project-related exceedance was recorded after investigation. No further action is therefore required to be undertaken in accordance with the Event and Action Plan presented in **Annex D5**.

TABLE 2.6 DETAILS OF EXCEEDANCES RECORDED FOR AIR QUALITY MONITORING

Date	Monitoring Station	Parameter	Exceedance Level	No. of exceedance(s)	Time period	Remarks
21 October 2025	M11	1-hour RSP	Action Level	1	18:00- 18:59	The exceedance was unlikely caused by the construction of the Project as no construction activity under ND/2024/09 was carried out and mitigation measures for air quality were implemented properly during the monitoring period.

2.2 NOISE MONITORING

2.2.1 MONITORING REQUIREMENTS AND EQUIPMENT

According to the EM&A Manual of the Project, noise impact monitoring was conducted once per week during the construction phase of the Project. The Action and Limit Levels for construction noise of the Project are provided in **Table 2.7** below.

TABLE 2.7 ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE

Time Period	Action Level	Limit Level
0700 - 1900 hours on normal	When one documented complaint is received	75 dB(A) ^{(a),(b)}
weekdays		

Note:

- (a) If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.
- (b) 70 dB(A) and 65 dB(A) for schools during normal teaching periods and school examination periods, respectively.

Noise monitoring was performed using sound level meter at the designated monitoring stations provided in **Table 2.8** and **Figure 2.2**, in accordance with the requirements stipulated in the

EM&A Manual. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Details of the deployed equipment are provided in **Table 2.8**. Copies of the calibration certificates for the equipment are presented in **Annex E1**.

TABLE 2.8 NOISE MONITORING DETAILS

Monitoring Station	Relevancy to Works Contract	Location	Parameter and Frequency	Monitoring Dates	Equipment	Type of Measurement	
CM1	ND/2024/09	69 Mai Po San Tsuen	30-minute measurement	8, 14, 21 and 28	Sound Level Meter: Rion	Free field	
CM3	ND/2024/09	Scenic Heights Block B2	(Monday to Saturday) Once per week for 30	Heights 0700 and 2 Block B2 1900 on normal weekdays II (Monday to Saturday) Once per week for 30	October 2025	NL-52 (S/N: 00331806)	Free field
CM4	ND/2024/09					Acoustic Calibrator: Larson Davis CAL200 (S/N: 11333)	Façade
CM9	ND/2024/10	285B Wing Ping Tsuen	mins during the construction	6, 13, 20 and 27	Sound Level Meter: Rion	Free field	
CM10	ND/2024/10	291 Chau Tau Tsuen	period of the	Octobor	NL-52 (S/N: 00542913)	Free field	
CM11	ND/2024/10	218 Chau Tau Tsuen	works contracts of the Project		Acoustic Calibrator: Larson Davis CAL200 (S/N: 11333)	Free field	

2.2.2 MONITORING SCHEDULE FOR THE REPORTING MONTH

The schedule for noise monitoring during the reporting period is provided in **Annex E2**.

2.2.3 RESULTS AND OBSERVATIONS

Results for noise monitoring are summarised in **Table 2.9**. Major noise sources during the noise monitoring included noise from use of Powered Mechanical Equipment (PME) due to pile wall construction, tree felling, demolition and site formation works. The monitoring data and the graphical presentation are provided in **Annex E3**.

TABLE 2.9 SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS IN THE REPORTING PERIOD

Monitoring Station	Average, dB(A), L _{eq (30 min)}	Range, dB(A), L _{eq (30 min)}	Limit Level, dB(A), L _{eq (30 min)}
CM1 ^(a)	69.6	68.6 - 70.6	75
CM3 ^(a)	53.3	49.3 - 54.8	75

Figure 2.2

Locations of Noise Monitoring Stations

Monitoring Station	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq} (30 min)	L _{eq} (30 min)	L _{eq} (30 min)
CM4	47.0	41.7 - 50.2	75
CM9 (a)	64.7	64.1 - 65.4	75
CM10 (a)	57.7	54.2 - 60.4	75
CM11 ^(a)	53.2	52.5 - 54.4	75

Note(s):

(a) A correction of +3 dB(A) was made to the free field measurements.

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting period. No action was thus required to be undertaken in accordance with the Event and Action Plan presented in **Annex E4**.

2.3 WATER QUALITY MONITORING

2.3.1 MONITORING REQUIREMENTS AND EQUIPMENT

Water quality impact monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation if the deterioration of water quality is caused by the Project. Impact water quality monitoring was undertaken three days per week during the reporting period in accordance with the EM&A Manual. Each water quality impact monitoring was scheduled such that the interval between two water quality impact monitoring was more than 36 hours to record representative water quality data throughout the week.

Two (2) replicate in-situ measurements and samples were collected at each monitored water depth of each designated monitoring stations. Dissolved Oxygen (DO), pH value, salinity, temperature and turbidity were measured in-situ whereas the level of suspended solids (SS) were determined by SGS Hong Kong Limited which is a HOKLAS accredited laboratory.

The calculated Action and Limit Levels of water quality monitoring with reference to the Baseline Water Quality Monitoring Report are provided in **Table 2.10**.

TABLE 2.10CALCULATED ACTION AND LIMIT LEVELS FOR WATER QUALITY

Parameter	Action Level	Limit Level		
San Tin Eastern Main Drainage Channel (STEMDC) - Station D1'				
DO in mg/L (a)	1.2 mg/L	1.2 mg/L		
SS in mg/L (b), (c)	105 mg/L, or 120% of upstream	113 mg/L, or 130% of upstream		
	control station's (U1a) SS recorded	control station's (U1a) SS recorded		
	on the same day	on the same day		
Turbidity in NTU (b), (c)	97 NTU, or 120% of upstream	102 NTU, or 130% of upstream		
	control station's (U1a) turbidity	control station's (U1a) turbidity		
	recorded on the same day	recorded on the same day		

San Tin Western Main Drainage Channel (STWMDC) - Stations D2a, D2b', D2c and D2d

Parameter	Action Level	Limit Level
DO in mg/L (a)	1.3 mg/L	1.1 mg/L
SS in mg/L (b), 3	38 mg/L, or 120% of upstream	46 mg/L, or 130% of upstream
	control stations' (U2a and U2b) SS	control stations' (U2a and U2b) SS
	recorded on the same day	recorded on the same day
Turbidity in NTU (b), (c)	42 NTU, or 120% of upstream	52 NTU, or 130% of upstream
	control stations' (U2a and U2b)	control stations' (U2a and U2b)
	turbidity recorded on the same day	turbidity recorded on the same day
Small Watercourses a	long Sam Tam Road - Station D7	
DO in mg/L (a)	0.6 mg/L	0.6 mg/L
SS in mg/L (b)	5 mg/L	5 mg/L
Turbidity in NTU (b)	11 NTU	12 NTU
Small Watercourses n	ear Mai Po Village - Station D8	
DO in mg/L (a)	1.4 mg/L	1.2 mg/L
SS in mg/L (b)	7 mg/L	8 mg/L
Turbidity in NTU (b)	12 NTU	13 NTU

Note(s):

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits
- (c) For clarity, the exceedance of Action / Limit Levels for SS and turbidity is considered to occur when both the baseline percentile criteria (based on 95%-ile / 99%-ile of collected baseline data) and control station criteria (based on 120% / 130% of control station data collected on the same day during impact monitoring) are exceeded. In case more than one upstream control station is involved, the higher number would be considered as the control criteria. Exceeding either the baseline percentile criteria or control station criteria alone does not constitute the exceedance of the corresponding Action / Limit Levels.

The locations of the monitoring stations under works contracts ND/2024/09 and ND/2024/10 are shown in **Figure 2.3** and **Table 2.11**.

TABLE 2.11 LOCATIONS OF IMPACT WATER QUALITY MONITORING STATIONS AND MONITORING REQUIREMENTS

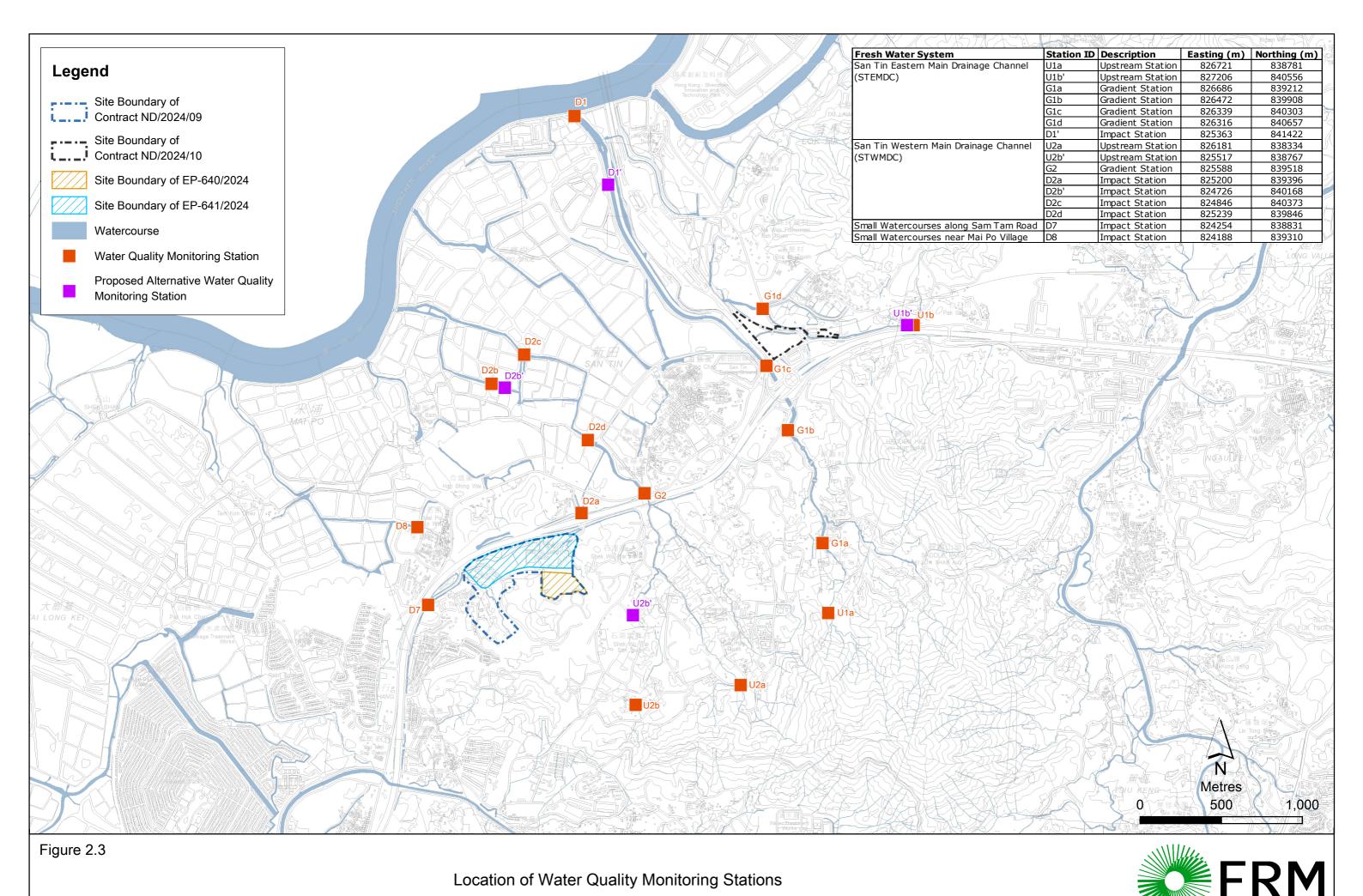
Monitoring Station	Relevancy to Works Contract	Coordinates		Description	Parameters	Monitoring
		Easting	Northing		and Frequency	Dates
U1a	ND/2024/10	826721	838781	Upstream Station	In-situ measurements	2, 4, 6, 8, 10, 13, 15, 17, 20, 22, 24, 27 and 30 October 2025
U1b' ^(a)	ND/2024/10	827146	840550	Upstream Station (Alternative Monitoring location of U1b)	 DO (mg/L) DO Saturation (%) Salinity Temperature 	
G1a	ND/2024/10	826686	839212	Gradient Station	(°C) • pH • Turbidity	
G1b	ND/2024/10	826472	839908	Gradient Station	(NTU)	
G1c	ND/2024/10	826339	840303	Gradient Station	Laboratory measurements	

Monitoring	Relevancy to	Coordinates		Description	Parameters	Monitoring	
Station	Works Contract	Easting	Northing		and Frequency	Dates	
G1d	ND/2024/10	826316	840657	Gradient Station	• SS (mg/L)		
D1' (b)	ND/2024/10	825363	841421	Impact Station	3 days per week		
U2a	ND/2024/09	826181	838334	Upstream Station	during the construction period of the	2, 4, 6, 8, 10, 14, 16, 18, 21, 23, 25, 27 and 30 October 2025	
U2b' ^(b)	ND/2024/09	825517	838767	Upstream Station (Alternative Monitoring location of U2b)	relevant works contracts of the Project.		
G2	ND/2024/09	825588	839518	Gradient Station			
D2a	ND/2024/09	825200	839396	Impact Station			
D2b' (b)	ND/2024/09	824726	840168	Impact Station (Alternative Monitoring location of D2b)			
D2c	ND/2024/09	824846	840373	Impact Station			
D2d	ND/2024/09	825239	839846	Impact Station			
D7	ND/2024/09	824254	838831	Impact Station			
D8	ND/2024/09	824188	839310	Impact Station			

Note(s):

- (a) Alternative water quality monitoring station U1b' is used as fall-back option in case sampling at original monitoring station of U1b as per EM&A Manual is not practical due to low flow condition.
- (b) Alternative water quality monitoring stations D1', D2b' and U2b' have been adopted as replacements of the original stations D1, D2b and U2b as per EM&A Manual due to access limitations.

The equipment used in the impact water quality monitoring work is summarised in **Table 2.12** below. Copies of the calibration certificates are attached in **Annex F1**.


TABLE 2.12 WATER QUALITY MONITORING EQUIPMENT

Parameters (Unit)	Equipment
In-situ Measurement	
Dissolved Oxygen (mg/L and % of saturation)	HORIBA U-50 Series U53 (S/N: FXMONLLF)
Salinity (ppt)	
Temperature (°C)	
рН	
Turbidity (NTU)	
Current Velocity (m/s)	雲境天合 LS300-B
Laboratory Analysis	
Suspended Solids (SS) (mg/L)	Sample Container: 1L Clear Plastic Bottle

2.3.2 MONITORING SCHEDULE FOR THE REPORTING MONTH

The schedule for water quality monitoring during the reporting period is provided in **Annex F2**.

2.3.3 RESULTS AND OBSERVATIONS

A total of twenty-six (26) monitoring events for impact water quality monitoring were conducted at all designated monitoring stations in the reporting period. Impact water quality monitoring results and graphical presentations are provided in **Annex F3**.

Two (2) Limit Level exceedances were recorded for impact water quality monitoring in the reporting period, including one (1) Limit Level for SS and one (1) Limit Level for Turbidity. Investigations on the Limit Level exceedances were conducted and summarised in **Table 2.13** below.

TABLE 2.13 DETAILS OF EXCEEDANCES RECORDED FOR WATER QUALITY MONITORING

Date	Monitoring	Parameter	Exceedance	Remarks
	Station		Level	
2 October 2025	D8	SS	Limit Level	The exceedances were unlikely
10 October 2025	D8	Turbidity	Limit Level	caused by the construction of the
				Project as no construction
				activities that cause potential
				water quality impact were carried
				out near Station D8.

No Project-related exceedances were recorded after investigation. No further action is therefore required to be undertaken in accordance with the Event and Action Plan presented in **Annex F4**.

2.4EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis with the Contractor and ER to monitor the implementation of proper environmental pollution control and mitigation measures for air quality, noise, water quality, waste management, landscape and visual impacts under the Project. In the reporting period, four (4) site inspections were carried out on 8, 14, 22 and 28 October 2025 for ND/2024/09, and five (5) site inspections were carried out on 2, 10, 16, 24 and 28 October 2025 for ND/2024/10.

Key observations during the site inspections are summarized in **Table 2.14**.

TABLE 2.14 KEY OBSERVATIONS IDENTIFIED DURING THE SITE INSPECTION IN THIS REPORTING MONTH

Inspection Date	Environmental Observations	Follow-up Status	
ND/2024/09			
8 October 2025	 Designated area should be assigned for waste storage at Portion 1B. Relevant EP should be displayed at all site entrances/exits. 	 Designated area has been assigned for waste storage at Portion 1B. Relevant EP have been displayed at all site entrances/exits. 	

Inspection Date	Environmental Observations	Follow-up Status
14 October 2025	 Designated area should be assigned for waste disposal/storage at Portion 1D. Drip tray should be placed under the oil container. 	 Designated area has been assigned for waste disposal/storage at Portion 1D. Drip tray has been placed underneath the oil container.
22 October 2025	Relevant EP should be displayed at the site entrance/exit at San Tin Soccer Pitch.	The Relevant EP has been displayed at the site entrance and exit at San Tin Soccer Pitch.
28 October 2025	The Contractor was reminded to provide wheel washing facility at the site entrance, and to provide bunds to gully to direct runoff to designated treatment facility.	Wheel washing facility has been provided at the site entrance. Bunds to gully have been provided to direct runoff to designated treatment facility.
ND/2024/10		
2 October 2025	 No NRMM label was displayed for the excavator. The contractor was reminded to display NRMM label for the excavator. Water spraying is not provided during breaking works. The contractor was reminded to provide water spraying for breaking works. Noise acoustic wrapping is not provided for the breaker. The contractor was reminded to provide noise acoustic wrapping for the breaker to reduce noise emission from the breaking works. 	 NRMM label has been displayed for the excavator. Water spraying has been provided during breaking works. Noise acoustic wrapping has been provided for the breaker during breaking works.
10 October 2025	 No particular observation. The contractor was reminded that regular watering should be provided for exposed site surfaces and unpaved roads. 	• N/A
16 October 2025	Accumulation of stockpiles was observed on site. The Contractor was reminded to clear the stockpile regularly or provide coverings for the stockpile.	Stockpile was covered by tarpaulin sheet when idle.
24 October 2025	Breaking works without water spraying was observed on site. The Contractor was reminded to provide water spraying for breaking works.	Water spraying was applied during breaking works.
28 October 2025	Open stockpiles should be covered by tarpaulin sheet.	Stockpile was covered by tarpaulin sheet when idle.

2.5 WASTE MANAGEMENT

Waste generated from the Works Contracts of the Project include inert construction and demolition (C&D) materials and non-inert C&D wastes. Sorting of C&D materials was carried out on site. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Reference has been made to the waste flow tables prepared by the Contractors. The quantities of different types of waste are summarised in **Table 2.15**. Details of cumulative waste management data are presented as a waste flow table in **Annex G**.

TABLE 2.15 QUANTITIES OF WASTE GENERATED IN REPORTING PERIOD

Month	Contract No.	Inert C&D Materials (a) (b) (m³)	Imported Fill (c) (m³)	Inert Construction Waste Reused (d) (m³)	Non-inert Construction Waste (e) (tonnes)	Recyclable Materials ^(f) (tonnes)	Chemical Waste (tonnes)
October 2025	ND/2024/09	0.00	0.00	0.00	5.00	0.003	0.00
	ND/2024/10	0.00	0.00	0.00	35.73	0.000	0.00
	Sub-total	0.00	0.00	0.00	40.73	0.003	0.00

Note:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) The conversion factor for inert C&D Materials for ND/2024/10 is 2.4 tonnes/m³.
- (c) Imported materials from any source outside of the Project.
- (d) Reuse of inert construction waste generated under the Project.
- (e) Non-inert construction wastes include general refuse disposed at landfill.
- (f) Recyclable materials include metals, paper, cardboard, plastics and others.

CLIENT: Civil Engineering and Development Department
PROJECT NO: 0785165 DATE: 13 November 2025 VERSION: 2

2.6 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

A summary of the Environmental Mitigation Implementation Schedule is presented in **Annex H**. The necessary mitigation measures were implemented properly for the Project.

2.7 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

There was no notification of summons or prosecution recorded in the reporting period.

3. FUTURE KEY ISSUES

3.1 CONSTRUCTION PROGRAMME FOR THE COMING THREE MONTHS

Works to be undertaken in the next three months are summarised in **Table 3.1** below, together with key issues and the key mitigation measures.

TABLE 3.1 MAJOR CONSTRUCTION WORKS IN THE NEXT THREE MONTHS

Construction Works to be Undertaken	Key Issues	Key Mitigation Measures
Contract No. ND/2024/09		
 Topographic Survey Ground Investigation Work Wetland Enhancement Works Soldier Pile Wall Construction Tree Felling Demolition Works Site Formation Works 	 Dust emission Handling and storage of C&D materials Noise from use of PME Emission of dark smoke from PMEs Proper discharge of wastewater Prevention and proper discharge of surface runoff Tree protection 	 Good site practices Regular water spraying on stockpiles Provide tarpaulin sheets coverage on stockpiles and reuse of C&D materials as far as practicable Use of QPME and noise barrier/acoustic mat/enclosure Regular maintenance of PMEs Implementation of wastewater and drainage management Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works
Contract No. ND/2024/10	Dust emissis	Cood site nonetices
 Ground Investigation Work Construction for Box Culvert Construction of Sewerage Pipe 	 Dust emission Handling and storage of C&D materials Noise from use of PME Emission of dark smoke from PMEs Proper discharge of wastewater Prevention and proper discharge of surface runoff Tree protection 	 Good site practices Regular water spraying on stockpiles Provide tarpaulin sheets coverage on stockpiles and reuse of C&D materials as far as practicable Use of QPME and noise barrier/acoustic mat/enclosure Regular maintenance of PMEs Implementation of wastewater and drainage management Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

The ET will keep track on the construction works to confirm compliance with environmental requirements and the proper implementation of all necessary mitigation measures. The ET will

also recommend to the Contractors about the environmental toolbox topics on the abovementioned key issues for the next reporting period.

3.2 MONITORING SCHEDULE FOR THE FUTURE 3 MONTHS

The tentative schedules for environmental monitoring in November, December 2025 and January 2026 are provided in **Annex I**.

4. CONCLUSION AND RECOMMENDATIONS

This EM&A Report presents the findings of the EM&A activities undertaken for the Project during the period of October 2025 in accordance with the EM&A Manual and the requirements of the EPs. The environmental monitoring, site inspection, environmental complaint handling and EM&A reporting in works areas under Contract Nos. ND/2024/09 and ND/2024/10 were covered and carried out.

Air quality (1-hour RSP, 24-hour rolling average RSP and 24-hour rolling average FSP), noise and water quality monitoring were carried out in the reporting period.

One (1) Action Level exceedance was recorded for impact air quality monitoring in the reporting period. Relevant investigation and follow-up action were conducted according to the EM&A programme. The exceedance was considered not related to the Project after investigation.

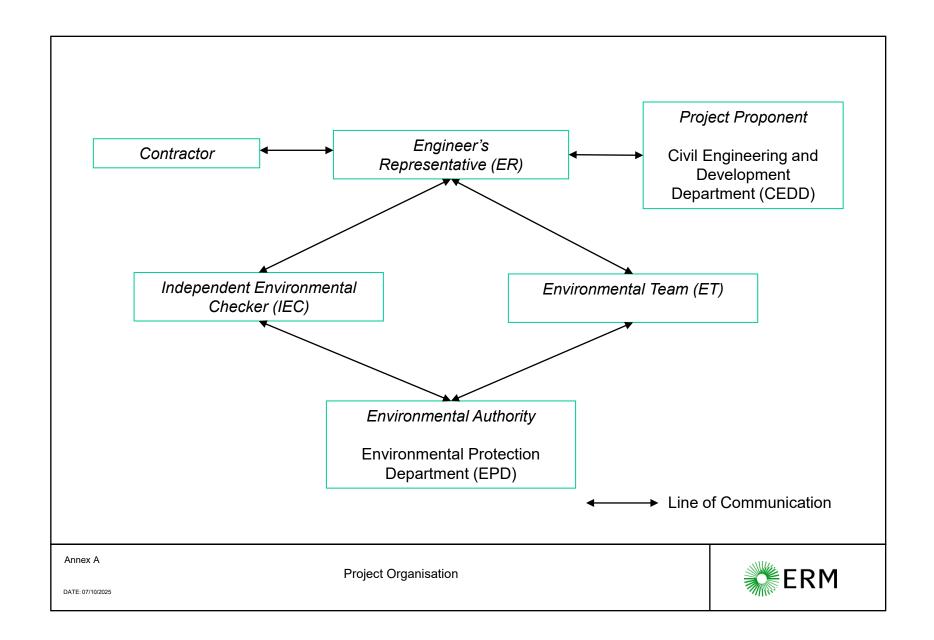
The monitoring results for impact noise monitoring complied with the Action/ Limit levels in the reporting period.

Two (2) Limit Level exceedances were recorded for impact water quality monitoring in the reporting period. Relevant investigations and follow-up actions were conducted according to the EM&A programme. The exceedances were considered not related to the Project after investigation.

Environmental site inspections were carried out during the reporting period.

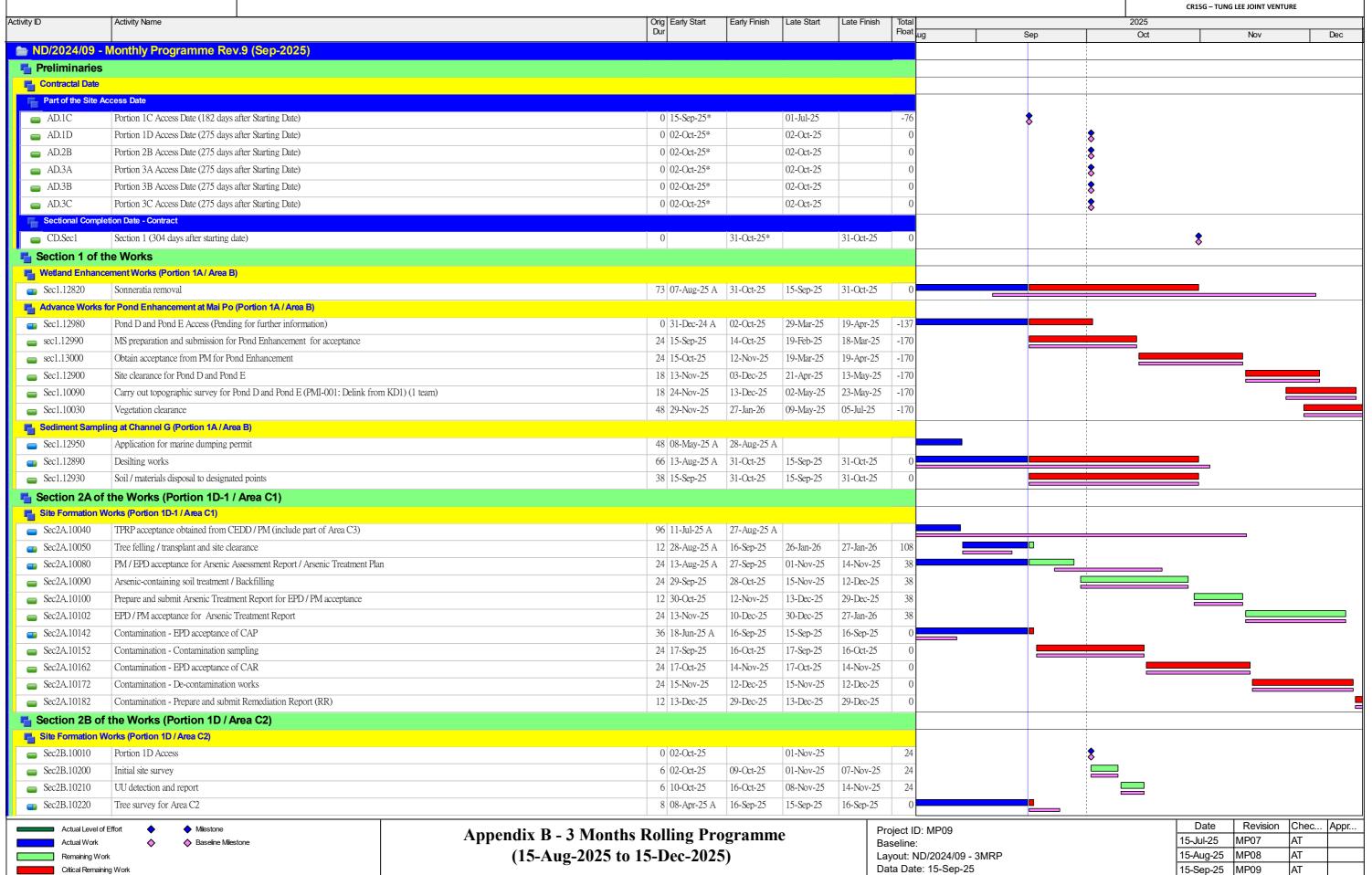
Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site inspections.

There was no environmental complaint, notification of summons or prosecution recorded in the reporting period.


The ET will keep track on the construction works to confirm compliance with environmental requirements and the proper implementation of all necessary mitigation measures.

ANNEX A

PROJECT ORGANISATION


ANNEX B

CONSTRUCTION PROGRAMME

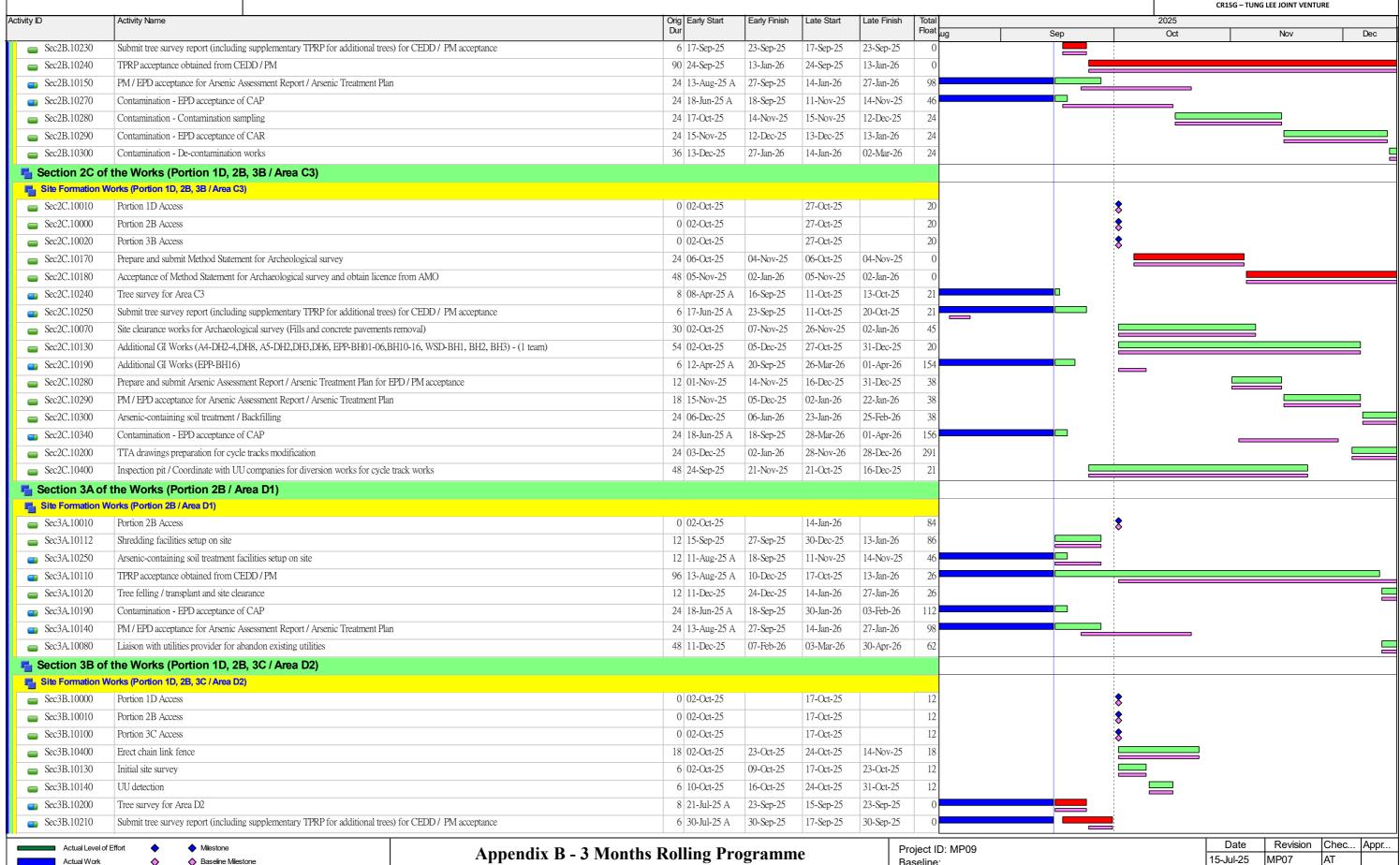
ND/2024/09 - San Tin Technopole Phase 1 Stage 1 (West) - Contract 1 - Site Formation and Associated Works

Primary Baseline

Page 1 of 5

ND/2024/09 - San Tin Technopole Phase 1 Stage 1 (West) - Contract 1 - Site Formation and Associated Works

ΑT


AT

15-Aug-25

15-Sep-25

MP08

MP09

(15-Aug-2025 to 15-Dec-2025)

Critical Remaining Work

Primary Baseline

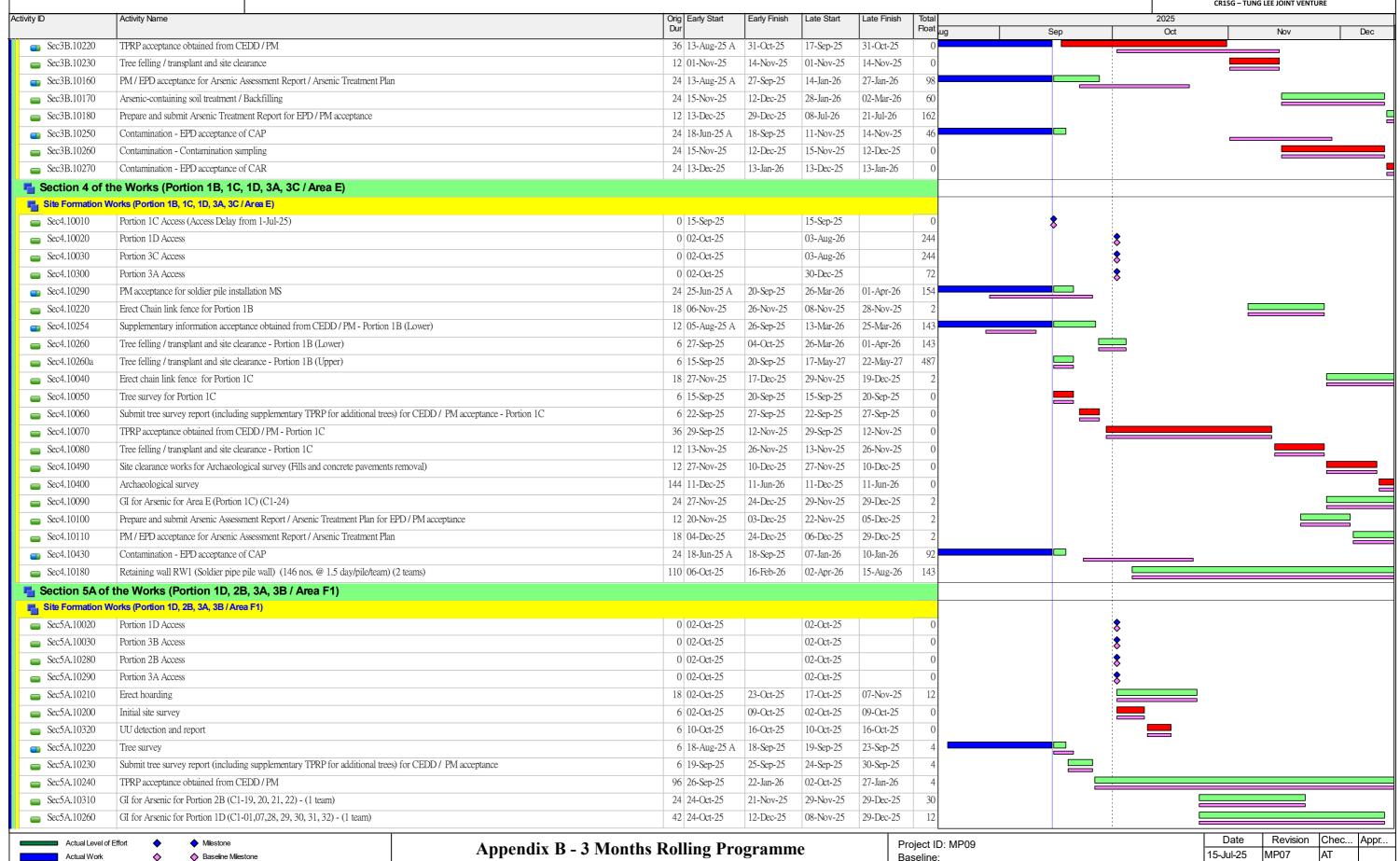
Layout: ND/2024/09 - 3MRP

Data Date: 15-Sep-25

Page 2 of 5

ND/2024/09 - San Tin Technopole Phase 1 Stage 1 (West) - Contract 1 - Site Formation and Associated Works

ΑT


AT

15-Aug-25

15-Sep-25

MP08

MP09

(15-Aug-2025 to 15-Dec-2025)

Critical Remaining World

Primary Baseline

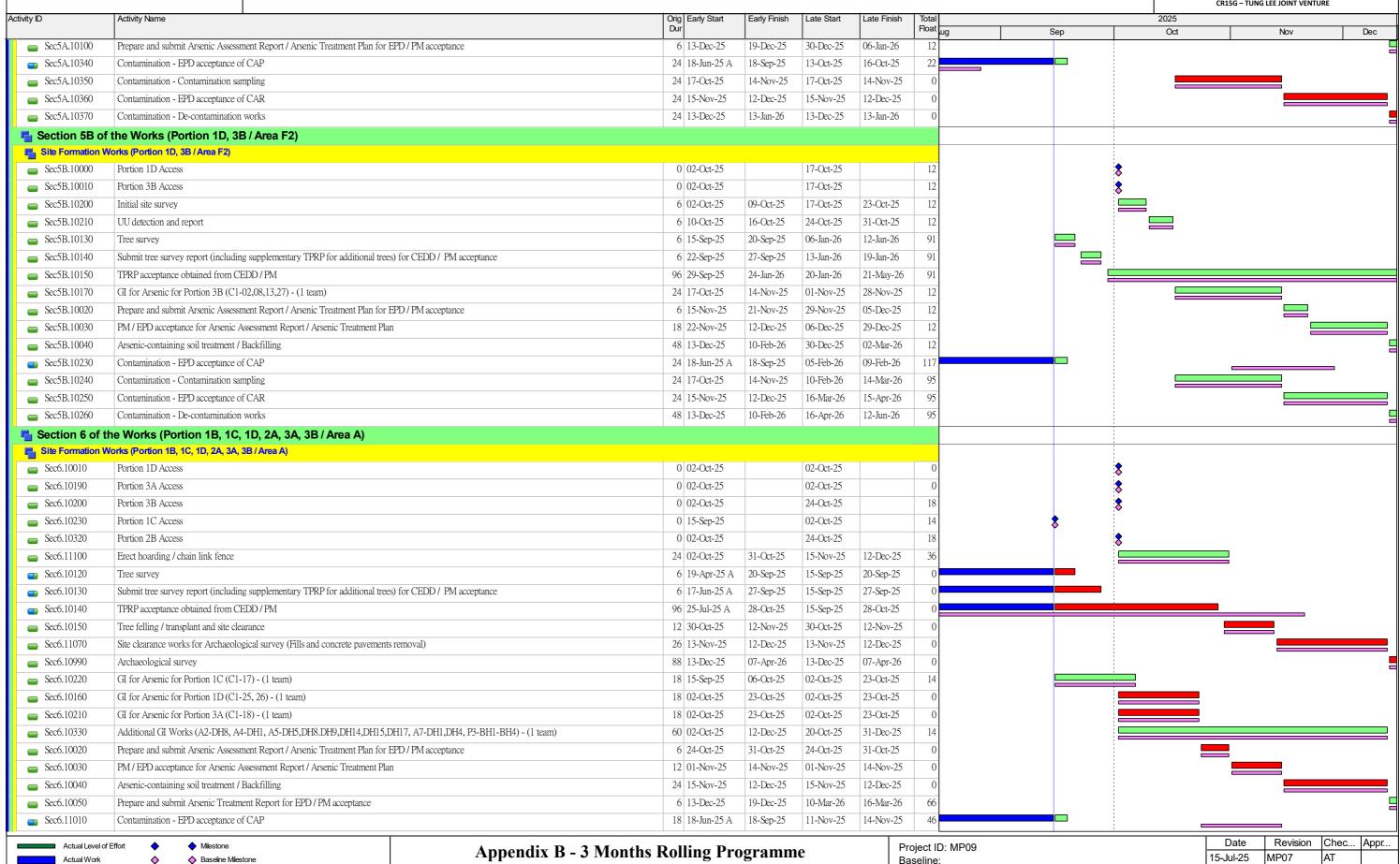
Layout: ND/2024/09 - 3MRP

Data Date: 15-Sep-25

Page 3 of 5

ND/2024/09 - San Tin Technopole Phase 1 Stage 1 (West) -Contract 1 - Site Formation and Associated Works

ΑT


AT

15-Aug-25

15-Sep-25

MP08

MP09

(15-Aug-2025 to 15-Dec-2025)

Primary Baseline

Layout: ND/2024/09 - 3MRP

Data Date: 15-Sep-25

Page 4 of 5

ND/2024/09 - San Tin Technopole Phase 1 Stage 1 (West) -Contract 1 - Site Formation and Associated Works

ity ID	Activity Name	Orig Early Start	Early Finish La	Late Start I	Late Finish	Total		2025	2025	
		Dur				Float	ug Sep	Oct	Nov	Dec
Sec6.11020	Contamination - Contamination sampling	24 15-Nov-25	12-Dec-25	15-Nov-25	12-Dec-25	0	•	1		
Sec6.11030	Contamination - EPD acceptance of CAR	18 13-Dec-25	06-Jan-26	13-Dec-25	06-Jan-26	0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Sec6.11080	Prepare and submit design of haul road and the lighting system	48 22-Nov-25	20-Jan-26	22-Nov-25	20-Jan-26	0		: : : :		
Sec6.10270	TTA drawings preparation for cycle tracks modification	24 17-Oct-25	14-Nov-25	22-Feb-27	20-Mar-27	395				
sec6.10280	TTA submission for TD / RMO approval	24 15-Nov-25	12-Dec-25	22-Mar-27	22-Apr-27	395		 		
Sec6.10290	Obtain RA for cycle track modification	24 13-Dec-25	13-Jan-26	23-Apr-27	22-May-27	395		1 1 1 1		
Prainage Manif	holes and Pipes Laying							1		
Haul Road (We	est)							1 1 1 1		
Sec6.10390	Trench excavation for DN750 drainage (Catch pit to SMH1a) and blinding	24 13-Nov-25	10-Dec-25	15-Nov-25	12-Dec-25	2		1 1 1 1		
Sec6.10400	DN750 drainage pipe laying (Catch pit to SMH1a)	12 11-Dec-25	24-Dec-25	13-Dec-25	29-Dec-25	2		1		
Sec6.10430	Trench excavation for DN750 drainage (SMH1a to SMH1b) and blinding	24 11-Dec-25	10-Jan-26	13-Dec-25	13-Jan-26	2		1 1 1 1		
Sec6.10490	Trench excavation for DN900 drainage (SMH4 to SMH2) and blinding	24 11-Dec-25	10-Jan-26	13-Dec-25	13-Jan-26	2		1		
Haul Road (Ea	ist)							1		
Sec6.10780	Trench excavation for DN600 drainage (SMH40 to SMH26) and blinding	24 13-Nov-25	10-Dec-25	13-Nov-25	10-Dec-25	0		1		
Sec6.10790	DN600 drainage pipe laying (SMH40 to SMH26)	12 11-Dec-25	24-Dec-25	11-Dec-25	24-Dec-25	0		; ; ; ;		
Sec6.10820	Trench excavation for DN600 drainage (SMH26 to ST8) and blinding	24 11-Dec-25	10-Jan-26	11-Dec-25	10-Jan-26	0		1 1 1		
Sec6.10840	Trench excavation for DN1050 drainage (SMH26 to existing nullah) and blinding	24 11-Dec-25	10-Jan-26	11-Dec-25	10-Jan-26	0		1 1 1		
Sec6.10860	Trench excavation for DN1650 drainage (SMH20 to SMH21) and blinding	24 11-Dec-25	10-Jan-26	11-Dec-25	10-Jan-26	0		1 1 1 1		
Sec6.10880	Trench excavation for DN1650 drainage (SMH21 to SMH22) and blinding	24 11-Dec-25	10-Jan-26	11-Dec-25	10-Jan-26	0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Sec6.10920	Trench excavation for DN1650 drainage (SMH22 to SMH23) and blinding	24 11-Dec-25	10-Jan-26	11-Dec-25	10-Jan-26	0		! ! !		
Sec6.10950	Trench excavation for DN1650 drainage (SMH23 to existing nullah) and blinding	24 11-Dec-25	10-Jan-26	11-Dec-25	10-Jan-26	0				

Actual Level of Effort
Actual Work
Remaining Work
Critical Remaining Work

♦ Milestone♦ Baseline Milestone

Appendix B - 3 Months Rolling Programme (15-Aug-2025 to 15-Dec-2025)

Project ID: MP09
Baseline:
Layout: ND/2024/09 - 3MRP
Data Date: 15-Sep-25
Page 5 of 5

Date	Revision	Chec	Appr
15-Jul-25	MP07	AT	
15-Aug-25	MP08	AT	
15-Sep-25	MP09	AT	

Contract. No.: ND/2024/10

San Tin Technopole Phase 1 (East) - Contract 1 - Site Formation and Engineering Infrastructure Works

Revised Programme - July 2025

ANNEX C

ENVIRONMENTAL LICENSES AND PERMITS OF THE PROJECT

ANNEX C STATUS OF STAUTORY ENVIRONMENTAL REQUIREMENTS

Contract No.	Description	Ref. / License No	Effective Date	Expiry Date	Status	Remark
General	Environmental Permit	EP-664/2025	08 July 2025	End of Project	Valid	For Revitalisation of San Tin Eastern Main Drainage Channel
		EP-665/2025	08 July 2025	End of Project	Valid	For Recreational Development ("Open Space") along San Tin Western Main Drainage Channel and at Mai Po Lung Village within Deep Bay Buffer Zone 2
		EP-666/2025	08 July 2025	End of Project	Valid	For New Primary Distributor Road (Road P1) and District Distributor Roads (Roads D1, D2, D3, D4, D5 and D6) for San Tin/Lok Ma Chau Development Node
ND/2024/09	Environmental Permit	EP-640/2024	28 May 2024	End of Project	Valid	For San Tin/Lok Ma Chau Water Reclamation Plant
		EP-641/2024	28 May 2024	End of Project	Valid	For San Tin/Lok Ma Chau Effluent Polishing Plant
	Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation	10012833	03 Jan 2025	End of Project	Notified	-
	Billing Account for Disposal of Construction Waste	7053501	16 Jan 2025	End of Project	Valid	-
	Registration as Chemical Waste Producer	WPN-5111-543- C5039-01	28 Jan 2025	End of Project	Valid	-
	Registration as Y- PARK Member	C0312	08 Jan 2025	End of Project	Valid	-

Contract No.	Description	Ref. / License No	Effective Date	Expiry Date	Status	Remark
	Discharge License under Water Pollution Control Ordinance	WT00046666- 2025	05 June 2025	30 June 2030	Valid	-
	Construction Noise Permit	GW-RN0799-25	18 July 2025	17 October 2025	Valid, superseded by GW- RN1197-25 after 17 October 2025	For Mai Po Nature Reserve near Observation Tower
	Construction Noise Permit	GW-RN1197-25	18 October 2025	17 February 2026	Valid	For Mai Po Nature Reserve near Observation Tower
	Marine Dumping Permit	EP/MD/26-017	11 August 2025	10 November 2025	Valid	For Channel G at Shan Pui River (dredging area bounded by points 1 to 765)
ND/2024/10	Notification of Construction Works under the Air Pollution Control (Construction Dust) Regulation	10012908	14 Jan 2025	End of Project	Valid	-
	Billing Account for Disposal of Construction Waste	7053388	08 January 2025	End of Project	Valid	-
	Registration as Y- PARK Member	C0325	11 April 2025	End of Project	Valid	-
	Discharge License under Water Pollution Control Ordinance	WT00047149- 2025	31 October 2025	31 October 2030	Valid since 31 October 2025	For Site Area Part A1 – A12

Contract No.	Description	Ref. / License No	Effective Date	Expiry Date	Status	Remark
	Registration as Chemical Waste Producer	WPN5111-542- K3625-01	14 February 2025	End of Project	Valid	-
	Construction Noise Permit	GW-RN0930-25	15 August 2025	10 November 2025	Valid	For Construction site near Hong Kong Institute of Construction San Tin Training Ground
	Construction Noise Permit	N/A (application Ref. No. 10022957)	N/A	N/A	Pending Approval	For Construction for Box Culvert

ANNEX D1

CALIBRATION CERTIFICATES (ONSITE SENSORS)

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z05			
Product Model:	MAS Dust	Serial No.:	dev9204Z250700005	
Issue Date:	2025-10-13			
Version V1.2_20251013				

Traceability of Calibration Instrument:

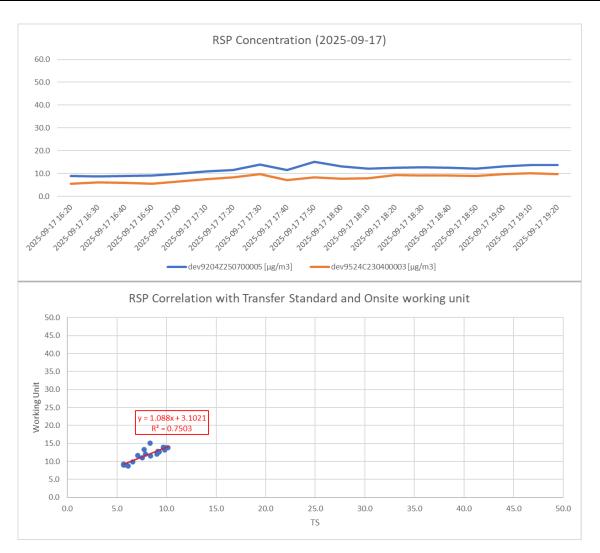
Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9524C230400003
PM ₁₀ (RSP)	Location: M09 Wing Ping Tsuen
	Collocation Data Period: 2025-09-17 16:20 to 2025-09-17 19:20

Calibration Result:

RSP:

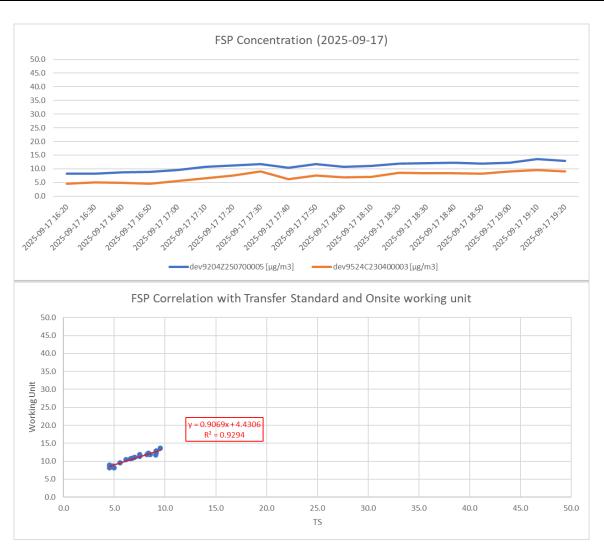
Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>					
Bias (Slope)	1.00±0.25	1.09	☑ PASS		
Linearity (R ²)	> 0.70	0.75	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	5.0 μg/m ³	Not applicable		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	4.8 μg/m ³	☑ PASS		

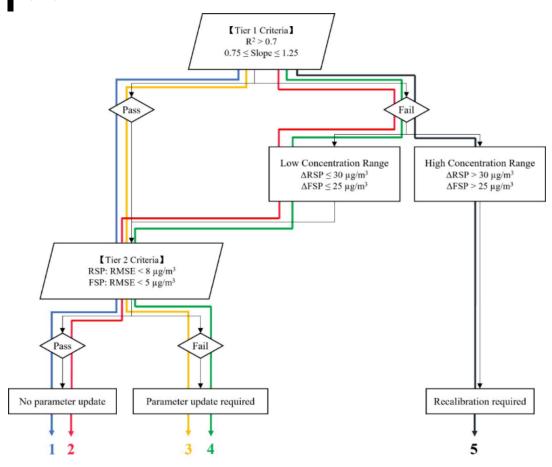
Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result	
<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	0.91	☑ PASS	
Linearity (R ²)	> 0.70	0.93	☑ PASS	
If Tier 1 fails, Conc. Range	$FSP \leq 25 \mu g/m^3$ is low conc.	4.5 μg/m ³	Not applicable	
will be checked	range			
<u>Tier 2</u>				
Error (RMSE)	< 5 μg/m³ for FSP	2.9 μg/m ³	☑ PASS	

Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z06			
Product Model:	MAS Dust	Serial No.:	dev9204Z250700006	
Issue Date:	2025-10-13			
Version	V1.1_20251013			

Traceability of Calibration Instrument:

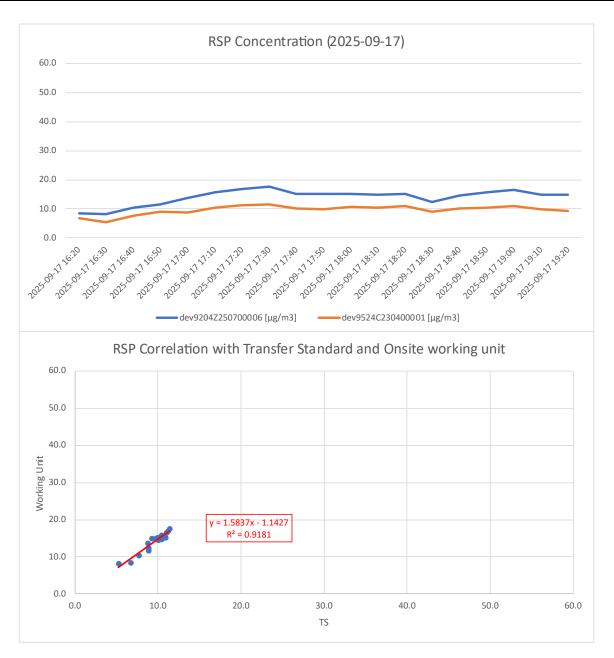
Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9524C230400001
PM ₁₀ (RSP)	Location: M04 Chau Tau Tsuen
	Collocation Data Period: 2025-09-17 16:20 to 2025-09-17 19:20

Calibration Result:

RSP:

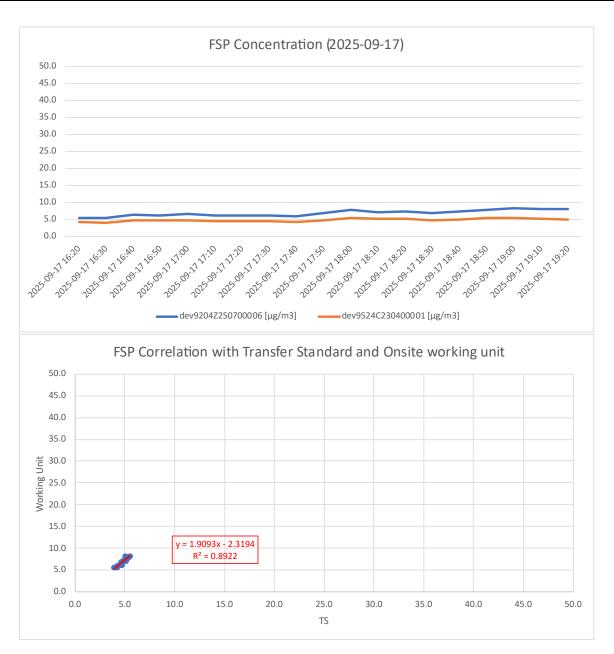
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.58	ĭ FAIL
Linearity (R ²)	> 0.70	0.92	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	6.1 µg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	4.6 μg/m ³	☑ PASS

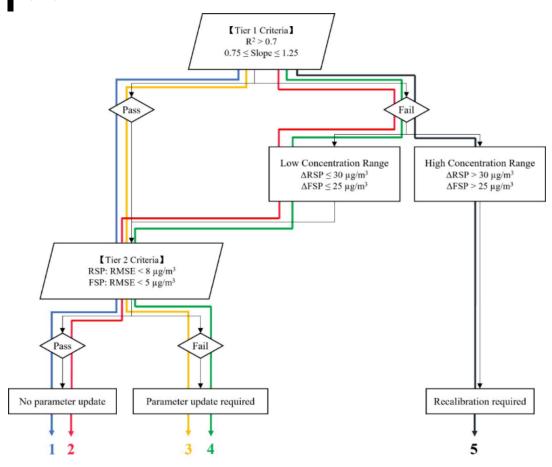
Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.91	ĭ FAIL
Linearity (R ²)	> 0.70	0.89	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	1.5 µg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	2.1 µg/m ³	☑ PASS

Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z07			
Product Model:	MAS Dust Serial No.: dev9204Z250700007			
Issue Date:	2025-10-13			
Version	V1.1_20251013	V1.1_20251013		

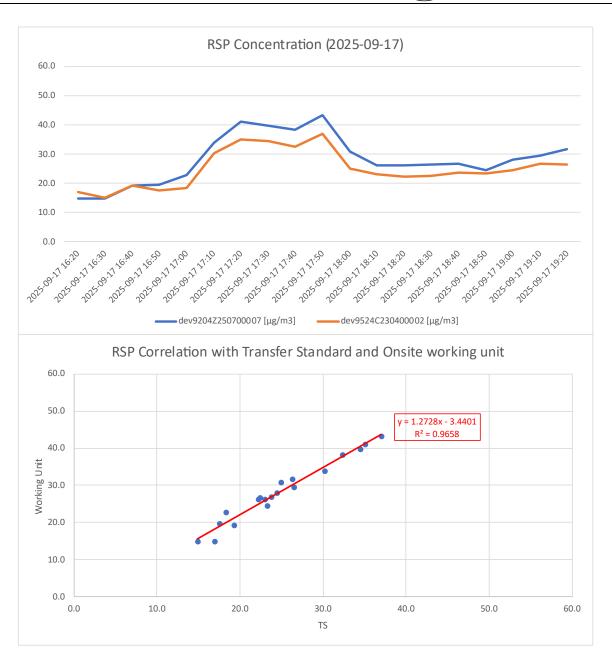
Traceability of Calibration Instrument:

Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Transfer Standard: dev9524C230400002	
PM ₁₀ (RSP)	Location: M03 Pun Uk Tsuen	
	Collocation Data Period: 2025-09-17 16:20 to 2025-09-17 19:20	

Calibration Result:

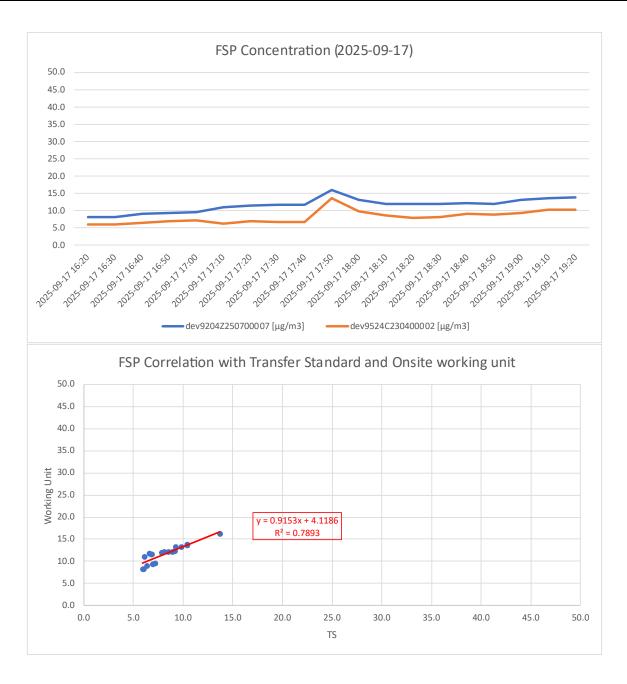
RSP:

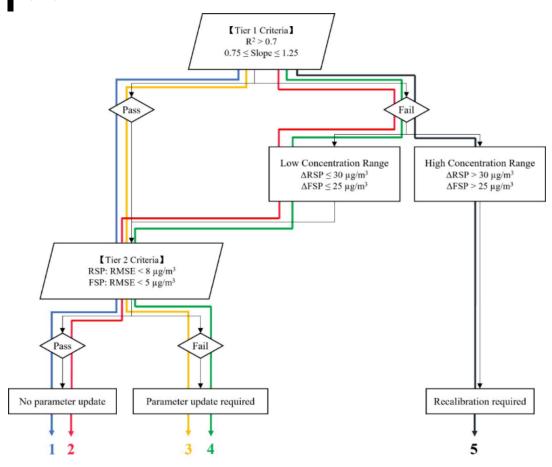
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.27	ĭ FAIL
Linearity (R ²)	> 0.70	0.97	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	22.1 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	4.1 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.92	☑ PASS
Linearity (R ²)	> 0.70	0.79	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	7.8 µg/m³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	3.6 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z19			
Product Model:	MAS Dust Serial No. : dev9204Z250900019			
Issue Date:	2025-11-12			
Version	V2.0_20251112	V2.0_20251112		

Traceability of Calibration Instrument:

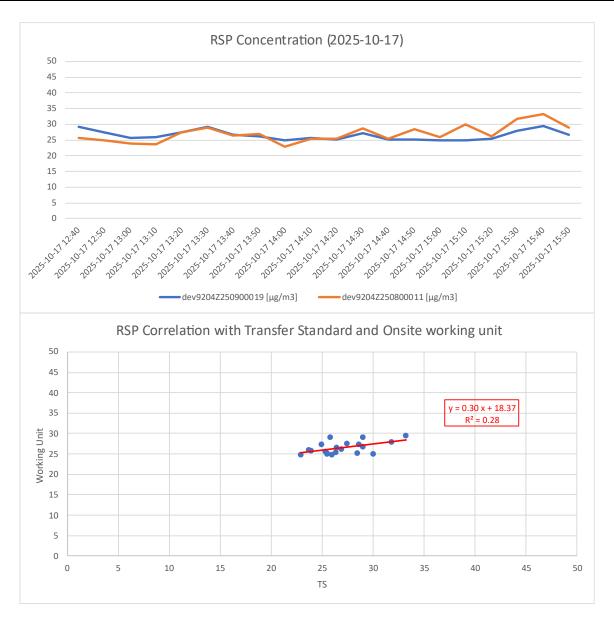
Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800011
PM ₁₀ (RSP)	Location: M15a The STEP
	Collocation Data Period: 2025-10-17 12:40 to 2025-10-17 15:50

Calibration Result:

RSP:

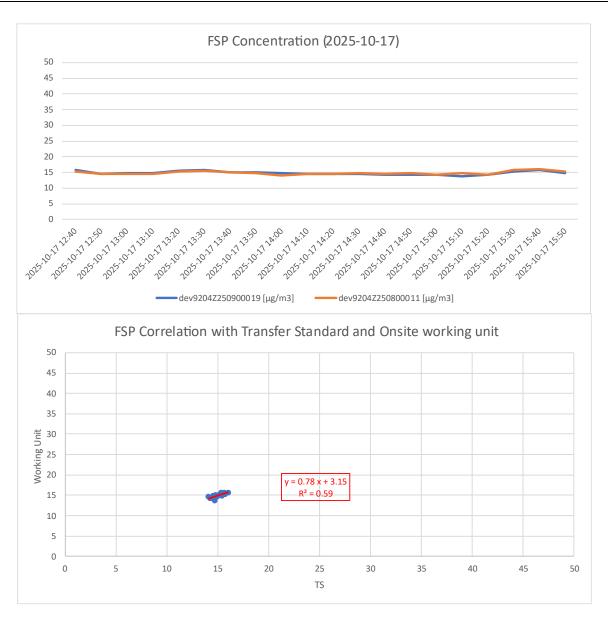
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.30	ĭ FAIL
Linearity (R ²)	> 0.70	0.28	ĭ FAIL
If Tier 1 fails, Conc. Range	$RSP \leq 30 \mu g/m^3$ is low conc.	10.3 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	2.3 μg/m ³	☑ PASS

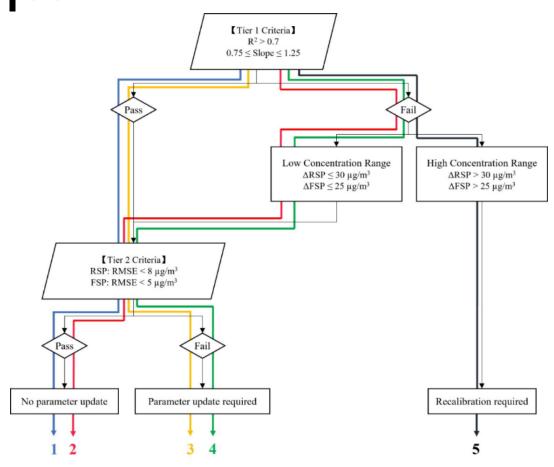
Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.78	☑ PASS
Linearity (R ²)	> 0.70	0.59	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	1.9 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	0.4 μg/m ³	☑ PASS

Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z13		
Product Model:	MAS Dust Serial No. : dev9204Z250800013		
Issue Date:	2025-10-13		
Version	V1.1_20251013		

Traceability of Calibration Instrument:

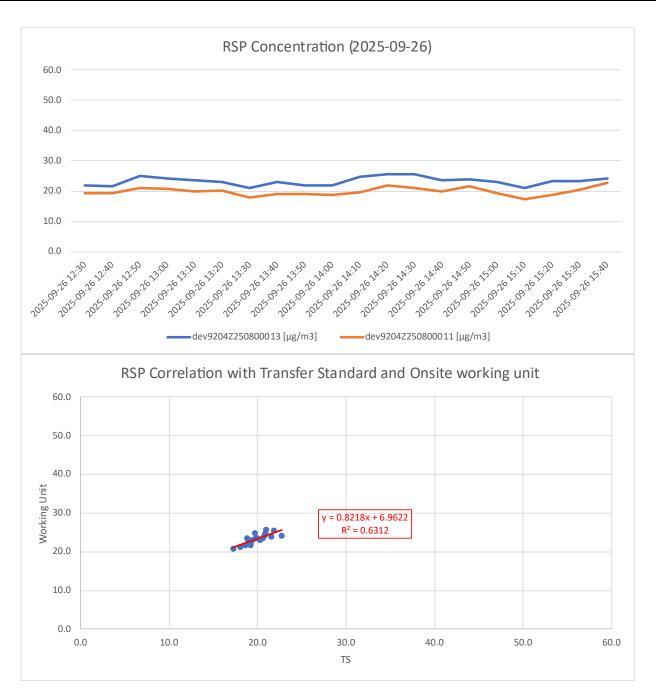
Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800011	
PM ₁₀ (RSP)	Location: M11 Shek Wu Wai	
	Collocation Data Period: 2025-09-26 12:30 to 2025-09-26 15:40	

Calibration Result:

RSP:

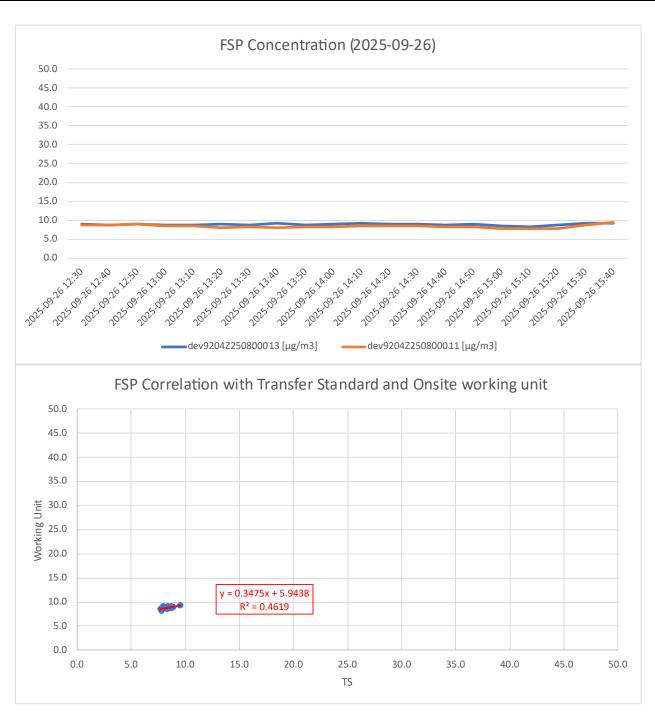
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.82	☑ PASS
Linearity (R ²)	> 0.70	0.63	ĭ FAIL
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	5.5 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	3.5 μg/m ³	☑ PASS

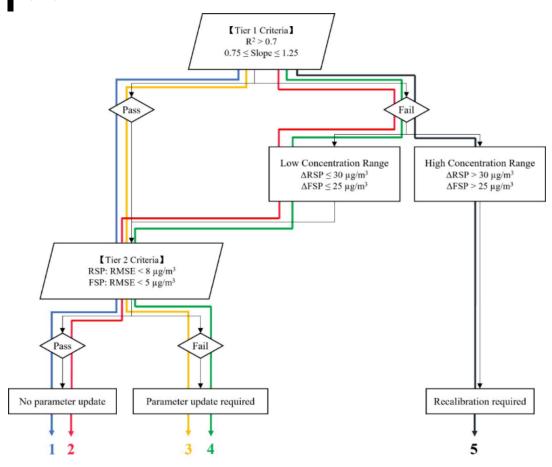
Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.35	ĭ FAIL
Linearity (R ²)	> 0.70	0.46	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	1.8 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	0.6 μg/m ³	☑ PASS

Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z14		
Product Model:	MAS Dust Serial No. : dev9204Z250800014		
Issue Date:	2025-10-13		
Version	V1.1_20251013		

Traceability of Calibration Instrument:

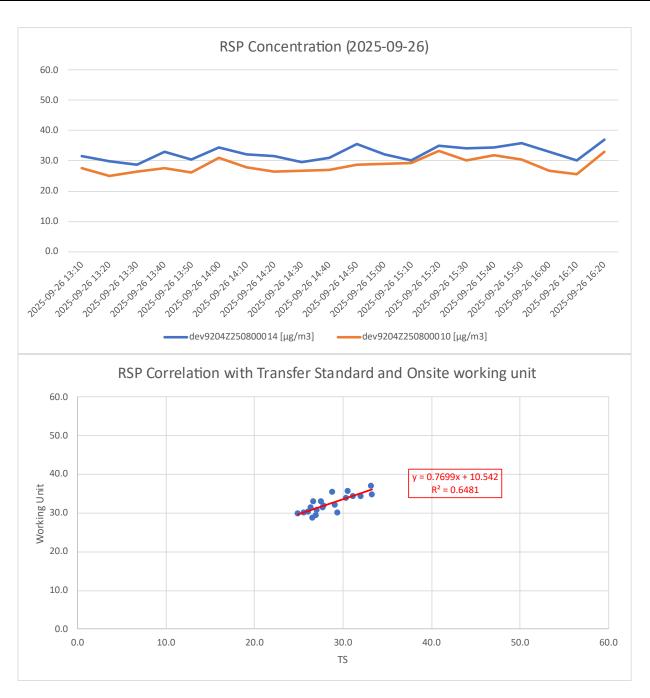
Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800010	
PM ₁₀ (RSP)	Location: M06 Mai Po San Tsuen	
	Collocation Data Period: 2025-09-26 13:10 to 2025-09-26 16:20	

Calibration Result:

RSP:

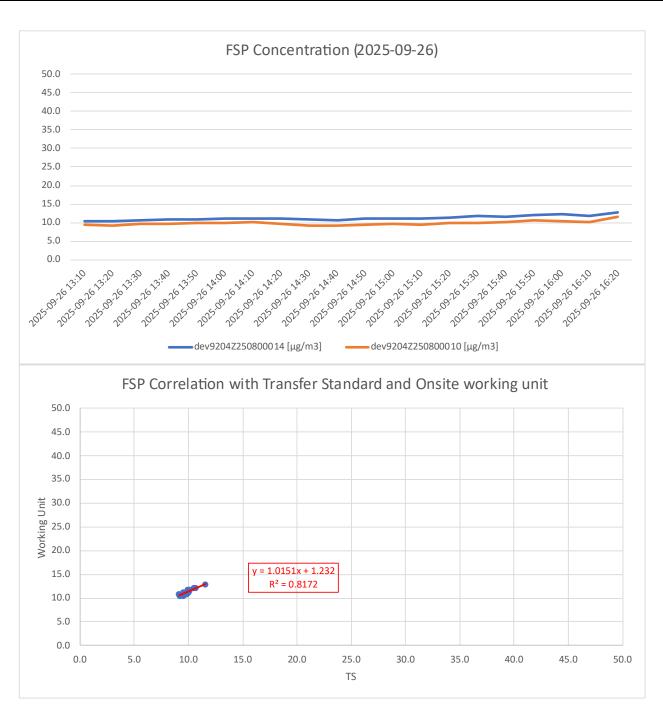
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.77	☑ PASS
Linearity (R ²)	> 0.70	0.65	ĭ FAIL
If Tier 1 fails, Conc. Range	$RSP \leq 30 \ \mu g/m^3$ is low conc.	8.4 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	4.3 μg/m ³	☑ PASS

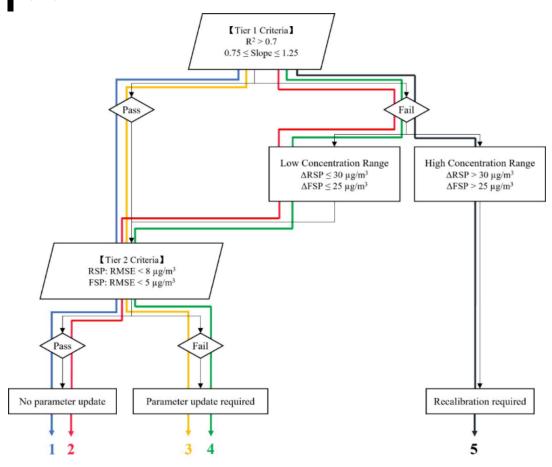
Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result	
<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	1.02	☑ PASS	
Linearity (R ²)	> 0.70	0.82	☑ PASS	
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	2.4 μg/m³	Not applicable	
will be checked	range			
<u>Tier 2</u>				
Error (RMSE)	< 5 µg/m³ for FSP	1.4 μg/m³	☑ PASS	

Remark: Follow QAQC Protocol Path 1 which is Criteria Tier 1 and Tier 2 passed.





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z15		
Product Model:	MAS Dust Serial No. : dev9204Z250800015		
Issue Date:	2025-10-13		
Version	V1.1_20251013		

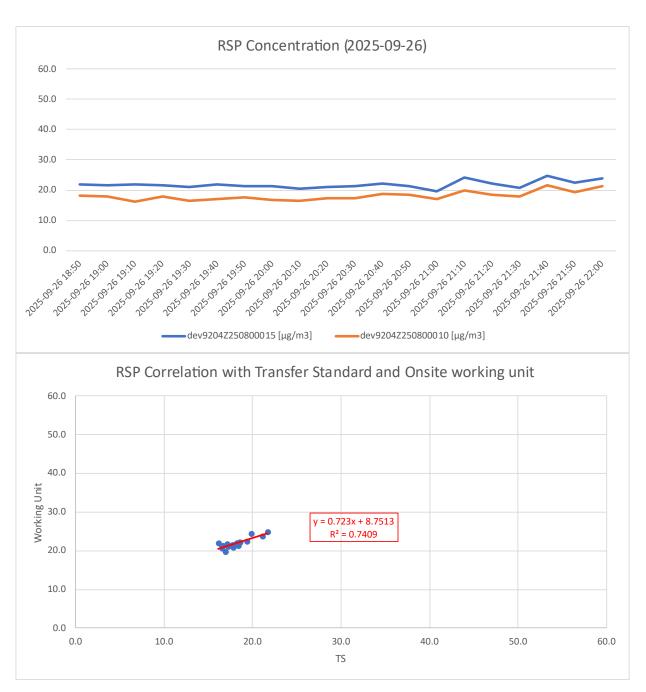
Traceability of Calibration Instrument:

Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800010	
PM ₁₀ (RSP)	Location: M14 Rolling Hill – Outside of Rolling Hill	
	Collocation Data Period: 2025-09-26 18:50 to 2025-09-26 22:00	

Calibration Result:

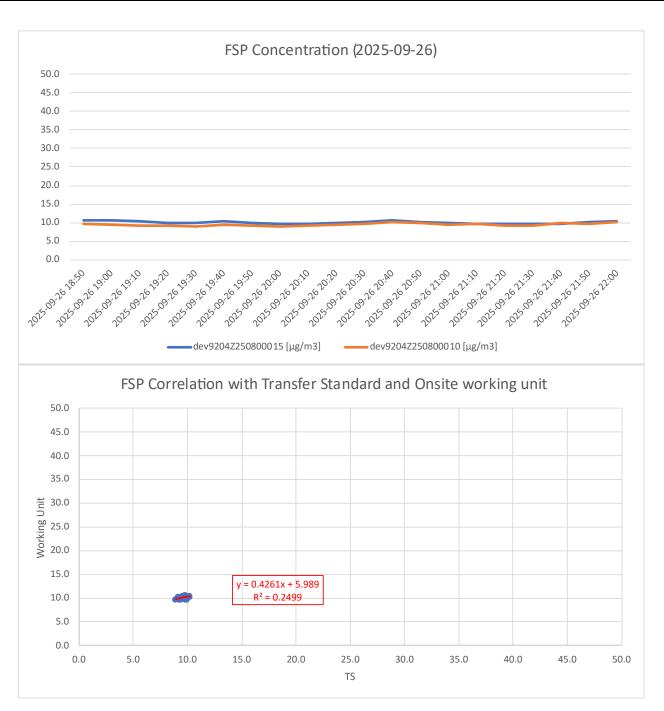
RSP:

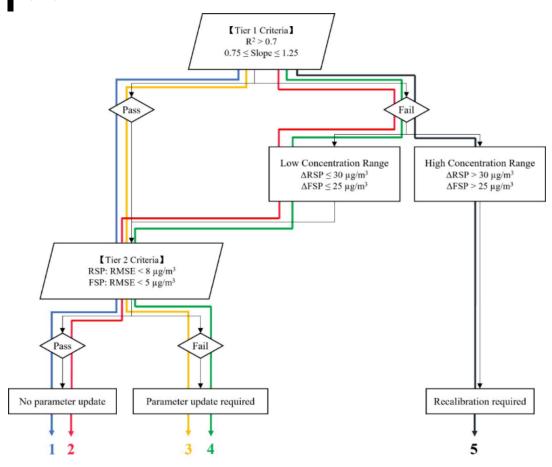
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.72	ĭ FAIL
Linearity (R ²)	> 0.70	0.74	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	5.6 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	3.8 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.43	ĭ FAIL
Linearity (R ²)	> 0.70	0.25	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	1.3 µg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	0.6 μg/m ³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z16			
Product Model:	MAS Dust Serial No. : dev9204Z250800016			
Issue Date:	2025-10-13			
Version	V1.1_20251013	V1.1_20251013		

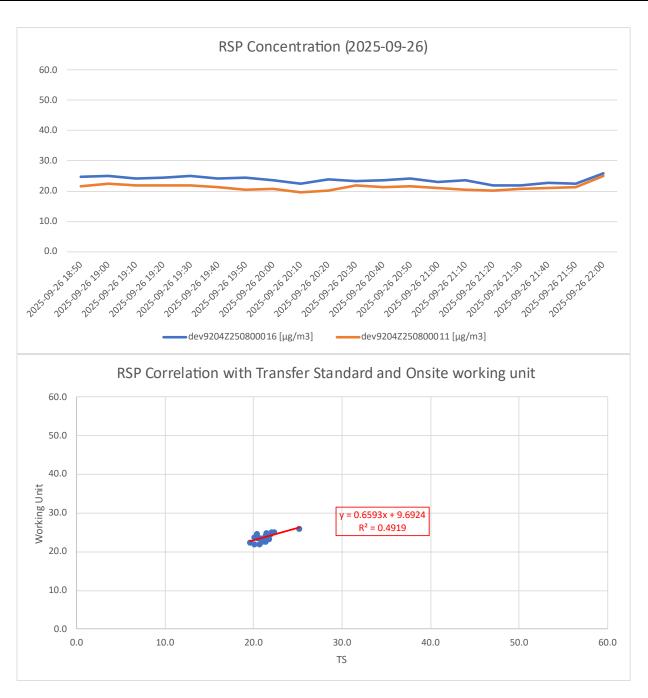
Traceability of Calibration Instrument:

	<u>.</u>
Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800011
PM ₁₀ (RSP)	Location: M13 Rolling Hill – Rooftop Area
	Collocation Data Period: 2025-09-26 18:50 to 2025-09-26 22:00

Calibration Result:

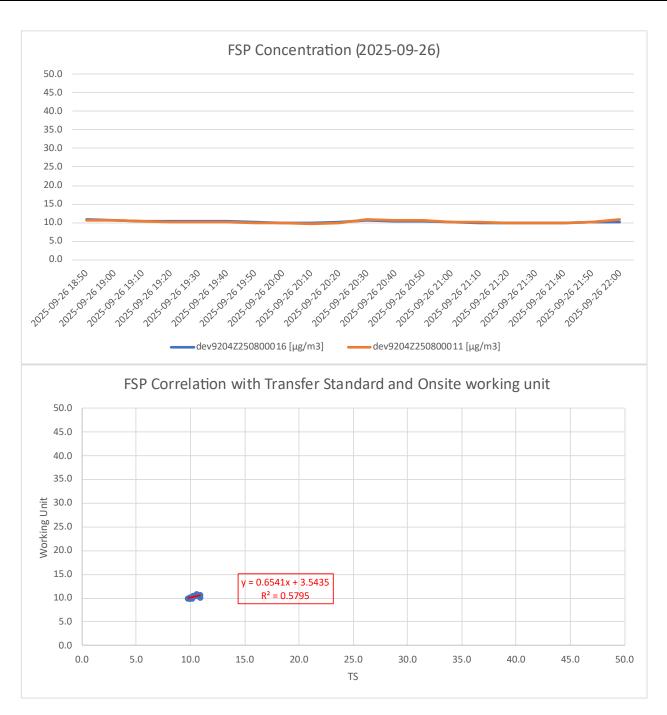
RSP:

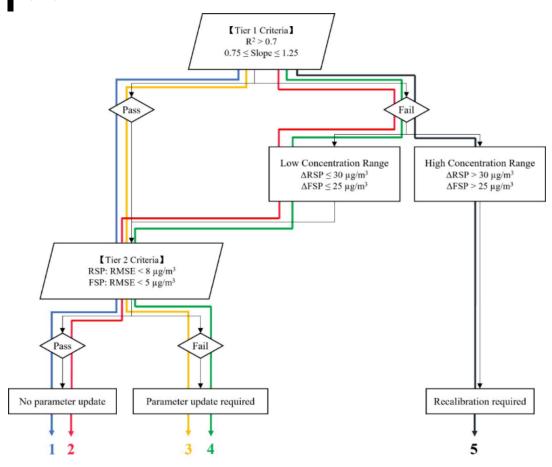
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.66	ĭ FAIL
Linearity (R ²)	> 0.70	0.49	ĭ FAIL
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	5.5 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	2.6 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.65	ĭ FAIL
Linearity (R ²)	> 0.70	0.58	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	1.1 µg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	0.2 μg/m³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z05			
Product Model:	MAS Dust Serial No. : dev9204Z250700005			
Issue Date:	2025-11-12			
Version	V3.0_20251112	V3.0_20251112		

Traceability of Calibration Instrument:

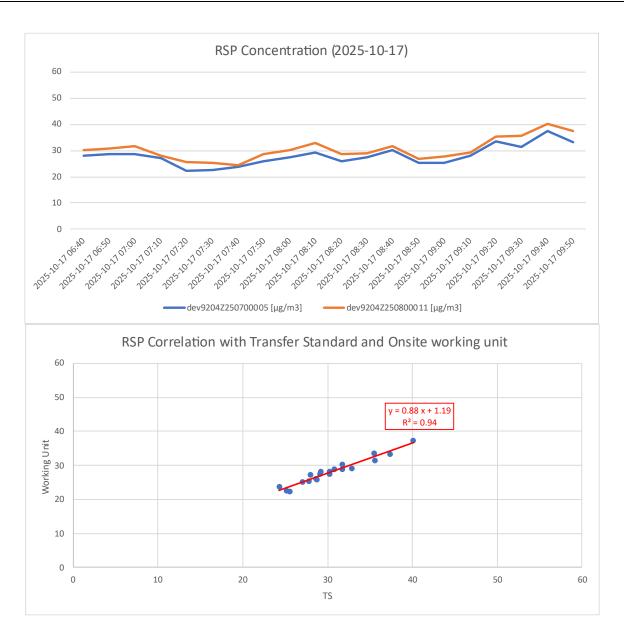
Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800011
PM ₁₀ (RSP)	Location: M09 Wing Ping Tsuen
	Collocation Data Period: 2025-10-17 06:40 to 2025-10-17 09:50

Calibration Result:

RSP:

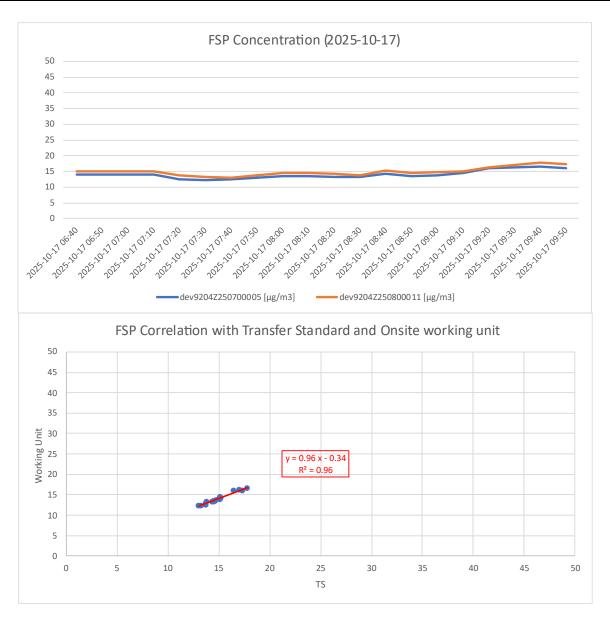
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.88	☑ PASS
Linearity (R ²)	> 0.70	0.94	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	15.8 μg/m³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	2.6 μg/m ³	☑ PASS

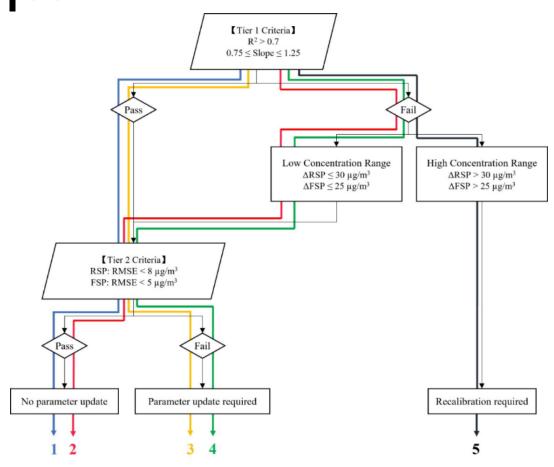
Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.96	☑ PASS
Linearity (R ²)	> 0.70	0.96	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	4.8 μg/m ³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	0.9 μg/m³	☑ PASS

Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z06		
Product Model:	MAS Dust Serial No. : dev9204Z250700006		
Issue Date:	2025-11-12		
Version	V2.0_20251112		

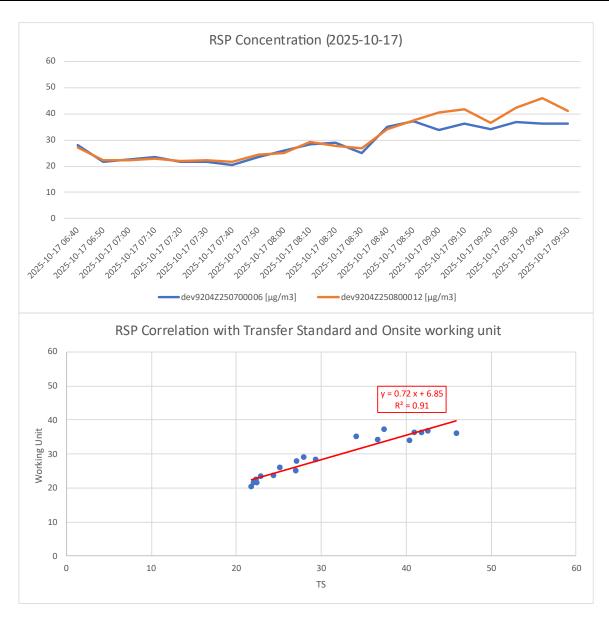
Traceability of Calibration Instrument:

Test Item	Calibration Instrument			
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800012			
PM ₁₀ (RSP)	Location: M04 Chau Tau Tsuen			
	Collocation Data Period: 2025-10-17 06:40 to 2025-10-17 09:50			

Calibration Result:

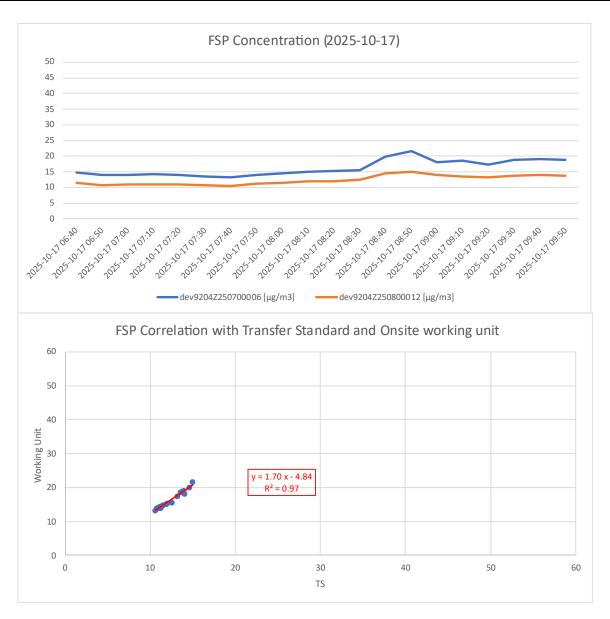
RSP:

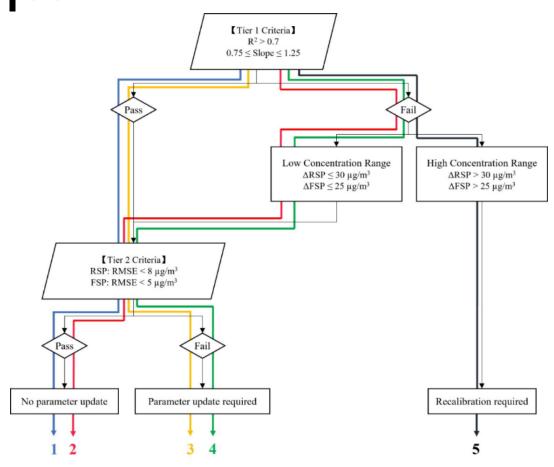
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.72	ĭ FAIL
Linearity (R ²)	> 0.70	0.91	☑ PASS
If Tier 1 fails, Conc. Range	$RSP \leq 30 \mu g/m^3$ is low conc.	24.1 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	3.4 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.70	ĭ FAIL
Linearity (R ²)	> 0.70	0.97	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \leqslant 25 \ \mu g/m^3$ is low conc.	4.4 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	4.0 μg/m ³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

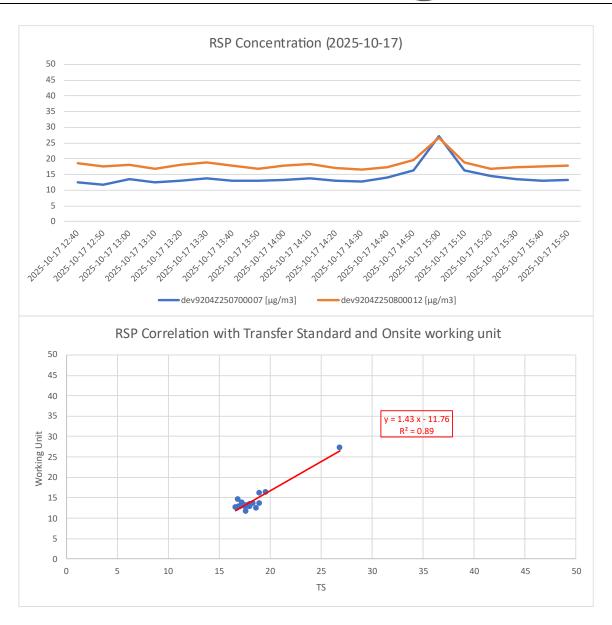
Report No.:	ZR/T CS.004-2025-10-Z07		
Product Model:	MAS Dust Serial No. : dev9204Z250700007		
Issue Date:	2025-11-12		
Version	V3.0_20251112		

Traceability of Calibration Instrument:

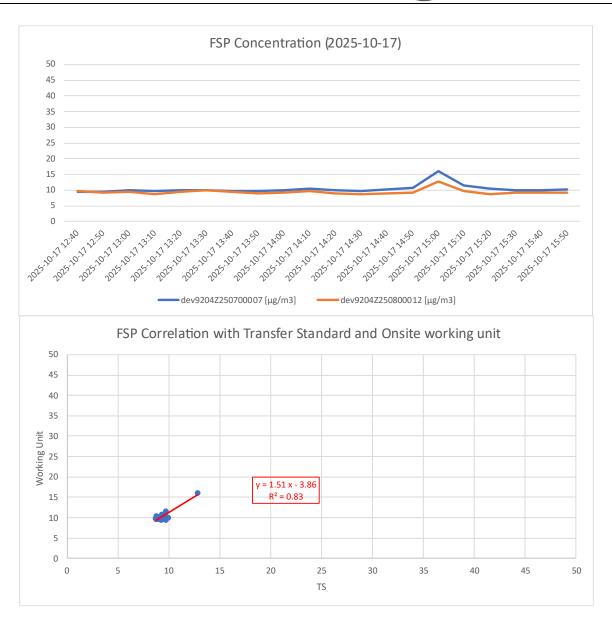
Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800012
PM ₁₀ (RSP)	Location: M03 Pun Uk Tsuen
	Collocation Data Period: 2025-10-17 12:40 to 2025-10-17 15:50

Calibration Result:

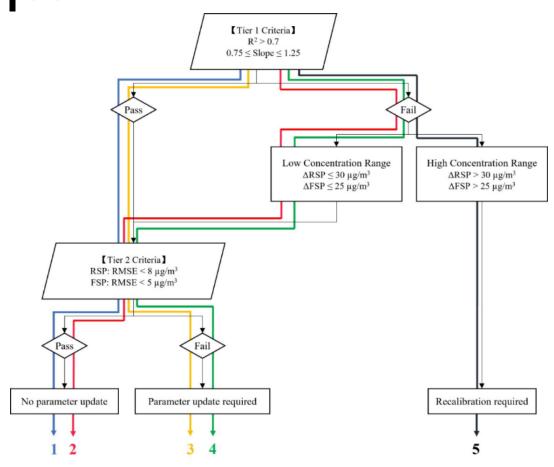
RSP:


Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.43	ĭ FAIL
Linearity (R ²)	> 0.70	0.89	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	10.2 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	4.2 μg/m ³	☑ PASS

Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.51	ĭ FAIL
Linearity (R ²)	> 0.70	0.83	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	4.1 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	1.2 μg/m ³	☑ PASS



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z13		
Product Model:	MAS Dust Serial No.: dev9204Z250800013		
Issue Date:	2025-11-12		
Version	V3.0_20251112		

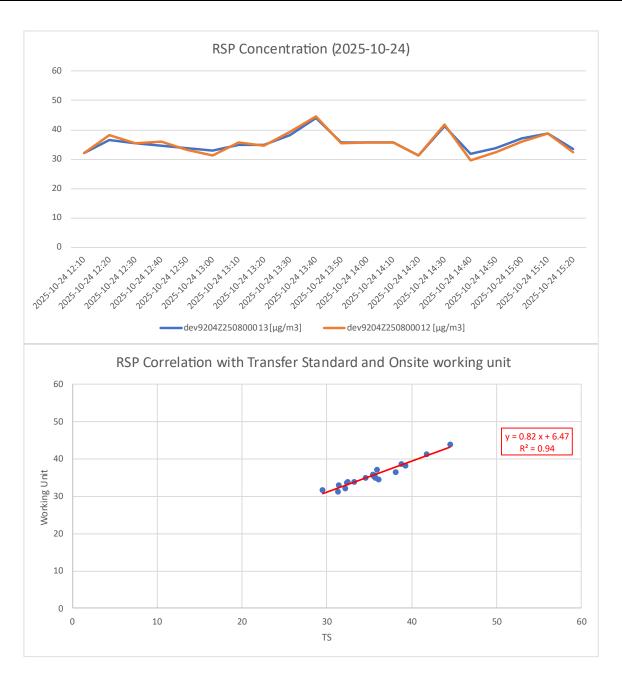
Traceability of Calibration Instrument:

Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800012
PM ₁₀ (RSP)	Location: M11 Shek Wu Wai
	Collocation Data Period: 2025-10-24 12:10 to 2025-10-24 15:20

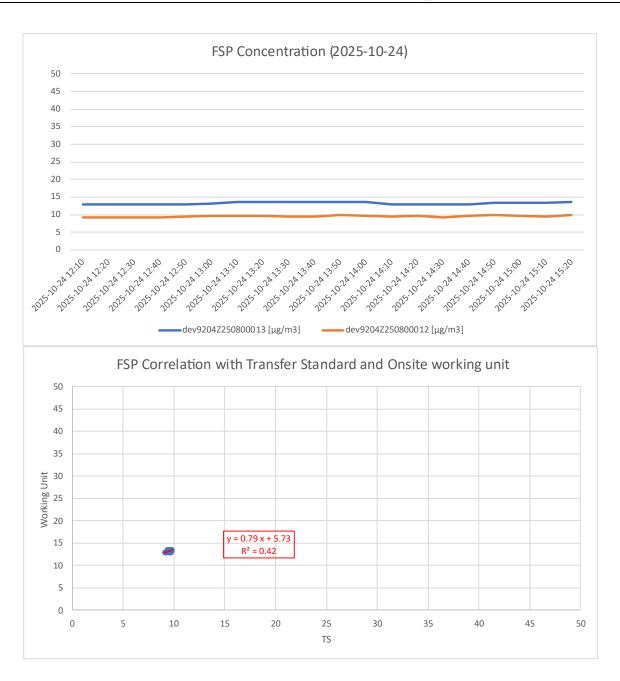
Calibration Result:

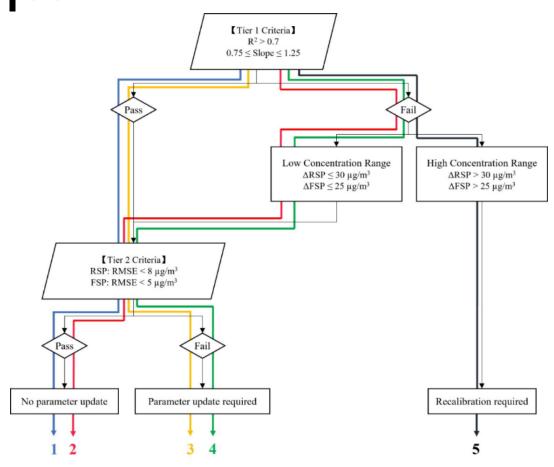
RSP:

Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	0.82	☑ PASS		
Linearity (R ²)	> 0.70	0.94	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	15.0 μg/m³	Not applicable.		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	1.0 μg/m ³	☑ PASS		


Remark: Follow QAQC Protocol Path 1 which is Criteria Tier 1 and Tier 2 passed.

FSP:


Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.79	☑ PASS
Linearity (R ²)	> 0.70	0.42	▼ FAIL
If Tier 1 fails, Conc. Range	$FSP \leq 25 \mu g/m^3$ is low conc.	0.7 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	3.7 μg/m ³	☑ PASS



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z14		
Product Model:	MAS Dust Serial No. : dev9204Z250800014		
Issue Date:	2025-11-12		
Version	V2.0_20251112		

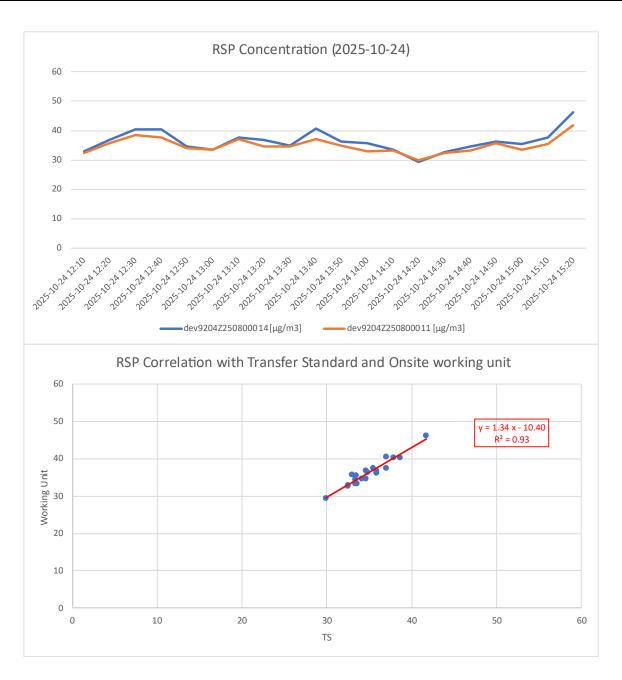
Traceability of Calibration Instrument:

Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800011
PM ₁₀ (RSP)	Location: M06 Mai Po San Tsuen
	Collocation Data Period: 2025-10-24 12:10 to 2025-10-24 15:20

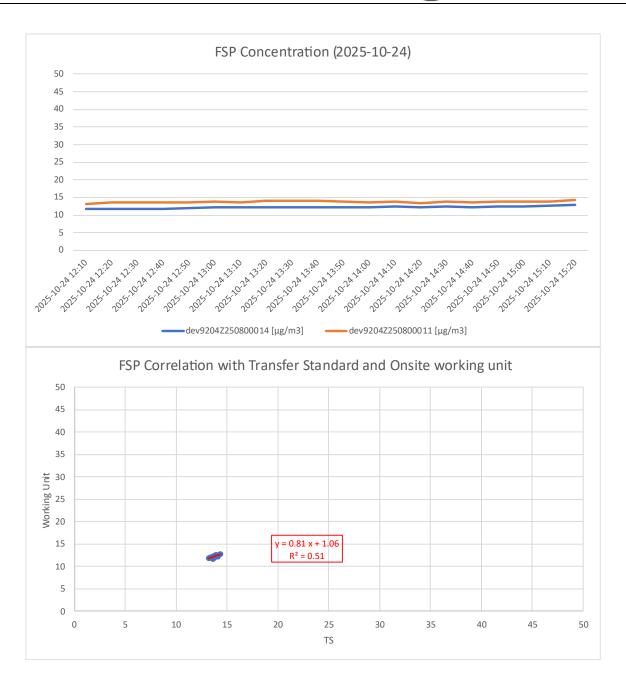
Calibration Result:

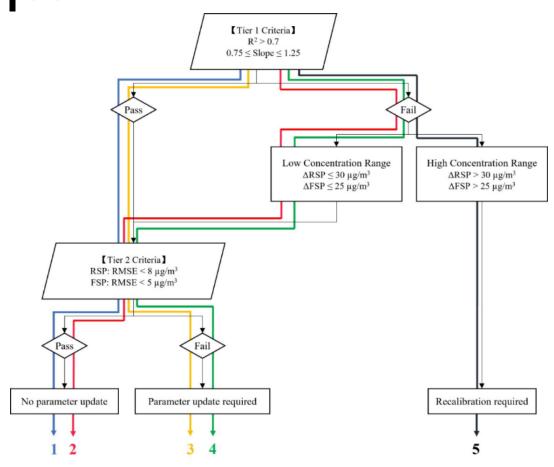
RSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	1.34	ĭ FAIL
Linearity (R ²)	> 0.70	0.93	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	11.8 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	1.9 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:


Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.81	☑ PASS
Linearity (R ²)	> 0.70	0.51	▼ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	1.1 µg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	1.6 μg/m³	☑ PASS



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z15			
Product Model:	MAS Dust	MAS Dust Serial No. : dev9204Z250800015		
Issue Date:	2025-11-12			
Version	V3.0_20251112			

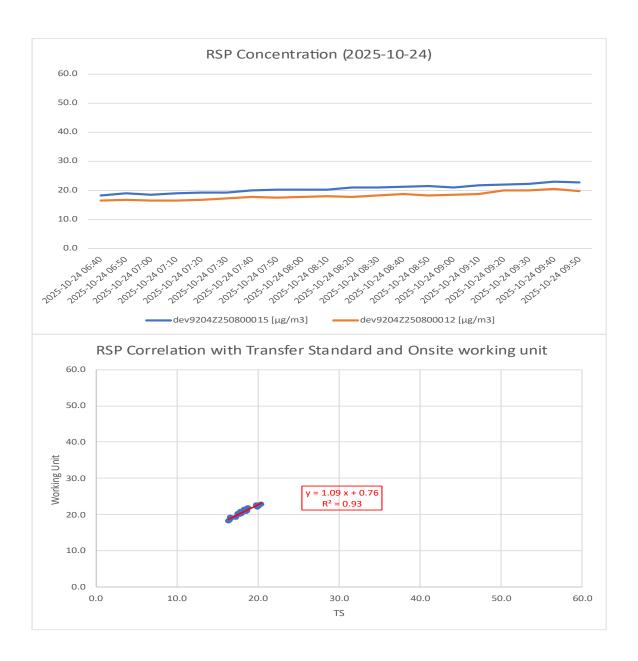
Traceability of Calibration Instrument:

Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800012
PM ₁₀ (RSP)	Location: M14 Rolling Hill – Outside of Rolling Hill
	Collocation Data Period: 2025-10-24 06:40 to 2025-10-24 09:50

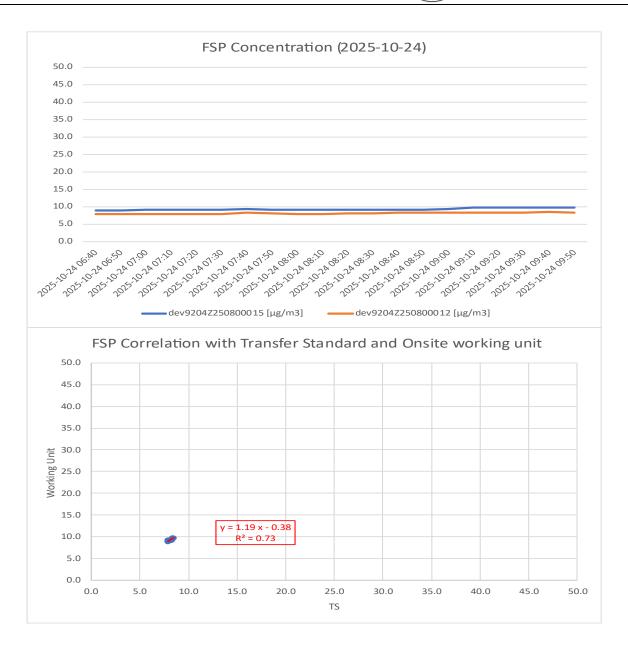
Calibration Result:

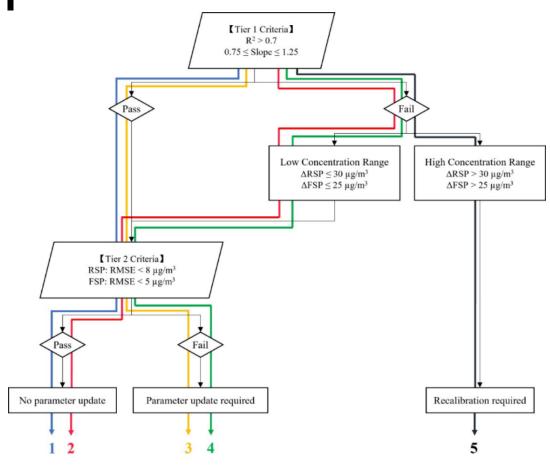
RSP:

Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	1.09	☑ PASS		
Linearity (R ²)	> 0.70	0.93	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	4.0 μg/m ³	Not applicable		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	2.5 μg/m ³	☑ PASS		


Remark: Follow QAQC Protocol Path 1 which is Criteria Tier 1 and Tier 2 passed.

FSP:


Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	1.19	☑ PASS		
Linearity (R ²)	> 0.70	0.73	☑ PASS		
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	0.6 μg/m ³	Not applicable		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 5 μg/m³ for FSP	1.2 μg/m³	☑ PASS		



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z16		
Product Model:	MAS Dust Serial No. : dev9204Z250800016		
Issue Date:	2025-11-12		
Version	V3.0_20251112		

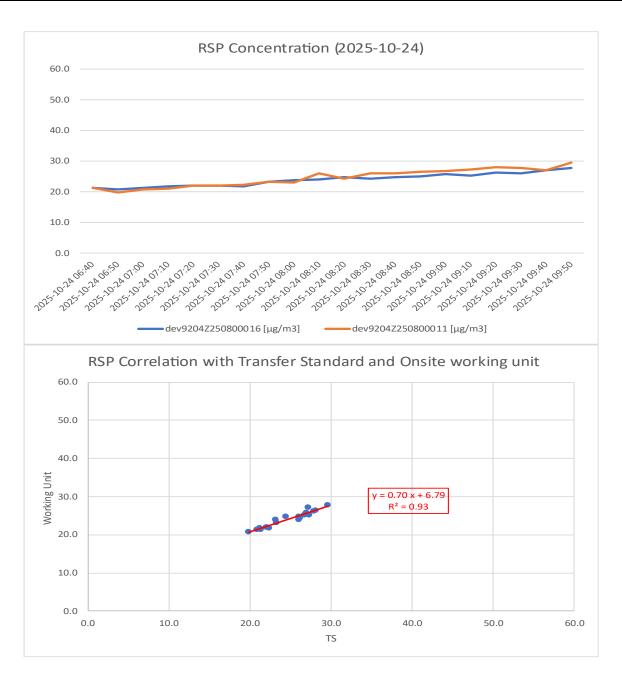
Traceability of Calibration Instrument:

Test Item	Calibration Instrument
PM _{2.5} (FSP)	Transfer Standard: dev9204Z250800011
PM ₁₀ (RSP)	Location: M13 Rolling Hill – Rooftop Area
	Collocation Data Period: 2025-10-24 06:40 to 2025-10-24 09:50

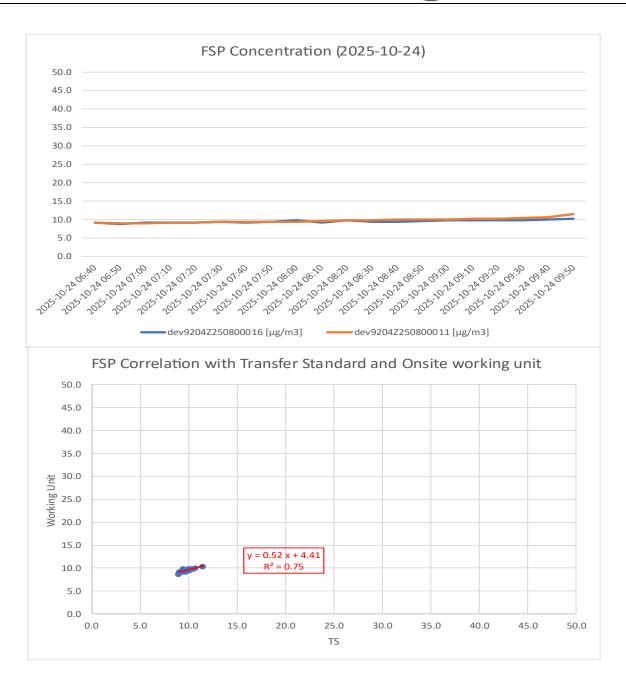
Calibration Result:

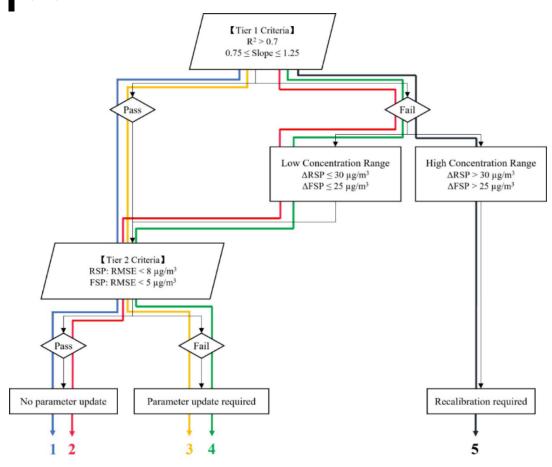
RSP:

Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	0.70	▼ FAIL		
Linearity (R ²)	> 0.70	0.93	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	9.7 μg/m ³	Not applicable.		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	1.2 μg/m³	☑ PASS		


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:


Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.52	ĭ FAIL
Linearity (R ²)	> 0.70	0.75	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \leqslant 25 \ \mu g/m^3$ is low conc.	2.5 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	0.4 μg/m³	☑ PASS



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

ANNEX D2

CALIBRATION CERTIFICATES (TRANSFER STANDARDS)

Product Information:

Report No.:	ZR/T CS.004-2025-09-C01			
Product Model:	MAS Dust Serial No. : dev9204C230400001			
Issue Date:	2025-10-13			
Version	V1.1_20251013	V1.1_20251013		

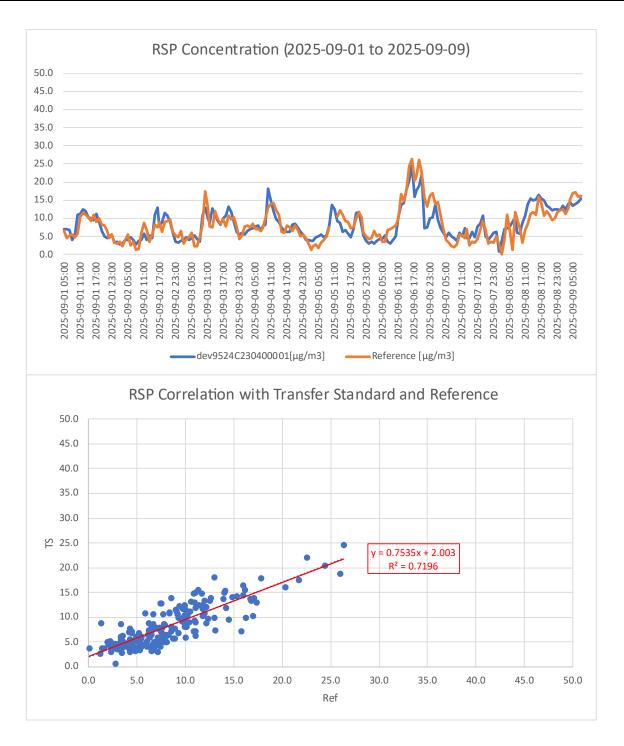
Traceability of Calibration Instrument:

Test Item	Calibration Instrument
PM _{2.5} (FSP)	Location: Tsuen Wan Air Quality Monitoring Station
PM ₁₀ (RSP)	Collocation Data Time: 2025-09-01 05:00 to 2025-09-09 08:00

Calibration Result:

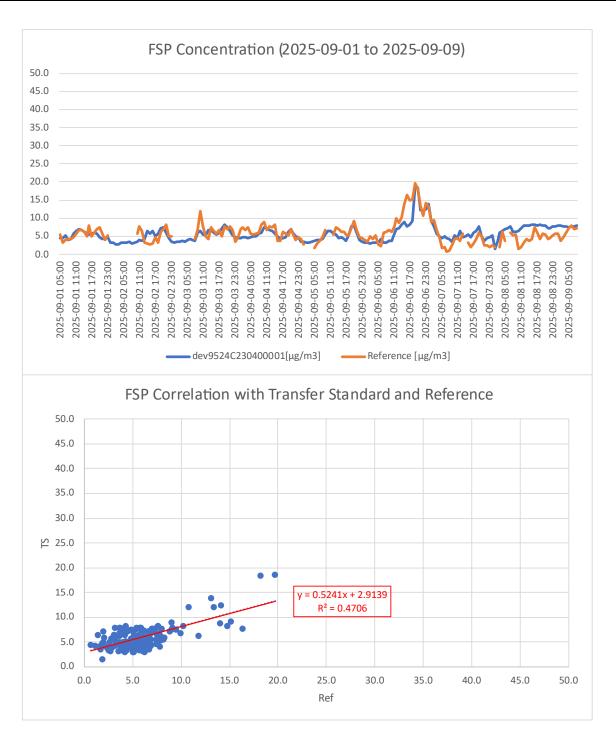
RSP:

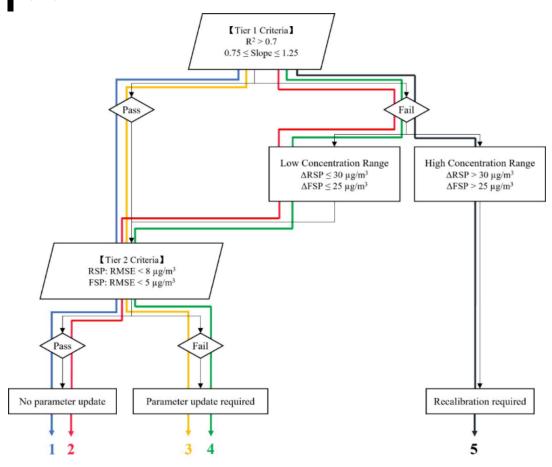
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.75	☑ PASS
Linearity (R ²)	> 0.70	0.72	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	26.2 μg/m ³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	2.5 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.

FSP:

101.			
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.52	ĭ FAIL
Linearity (R ²)	> 0.70	0.47	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	19.0 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	2.1 μg/m ³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-C02			
Product Model:	MAS Dust Serial No. : dev9204C230400002			
Issue Date:	2025-10-13			
Version	V1.1_20251013	V1.1_20251013		

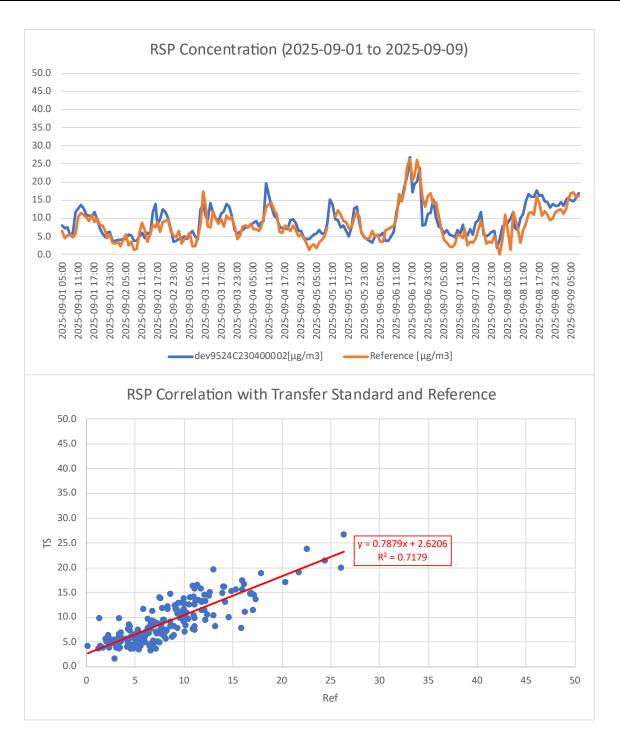
Traceability of Calibration Instrument:

Test Item	Calibration Instrument
PM _{2.5} (FSP)	Location: Tsuen Wan Air Quality Monitoring Station
PM ₁₀ (RSP)	Collocation Data Time: 2025-09-01 05:00 to 2025-09-09 08:00

Calibration Result:

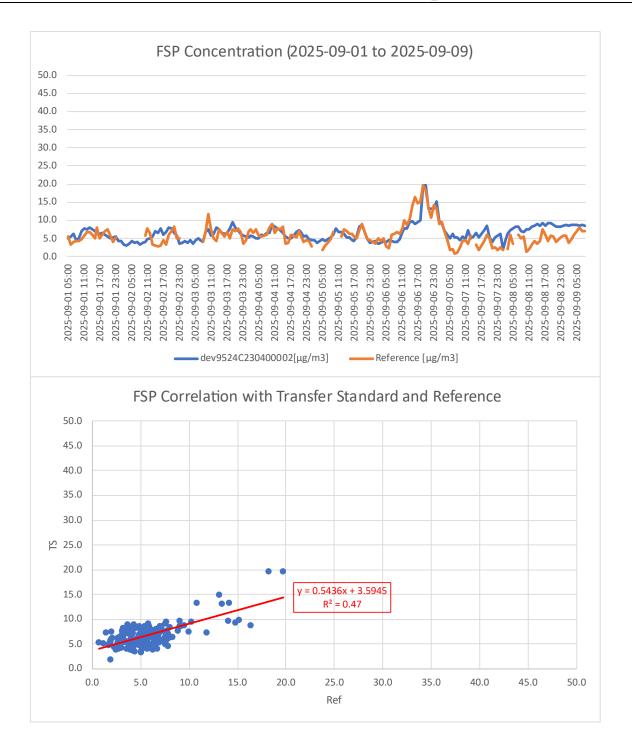
RSP:

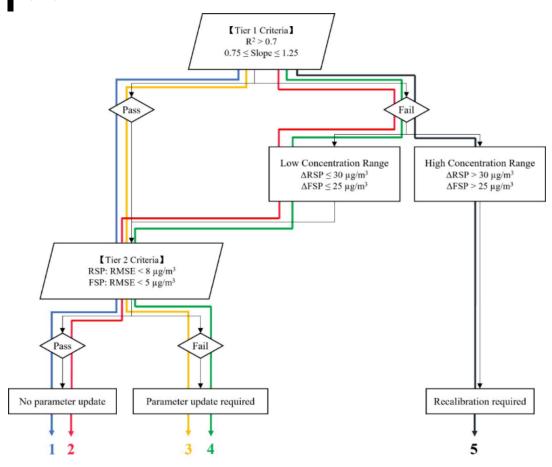
Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	0.79	☑ PASS		
Linearity (R ²)	> 0.70	0.72	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	26.2 μg/m ³	Not applicable		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	2.7 μg/m ³	☑ PASS		


Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.54	▼ FAIL
Linearity (R ²)	> 0.70	0.47	▼ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	19.0 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	2.2 μg/m³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-C03		
Product Model:	MAS Dust Serial No. : dev9204C230400003		
Issue Date:	2025-10-13		
Version	V1.1_20251013		

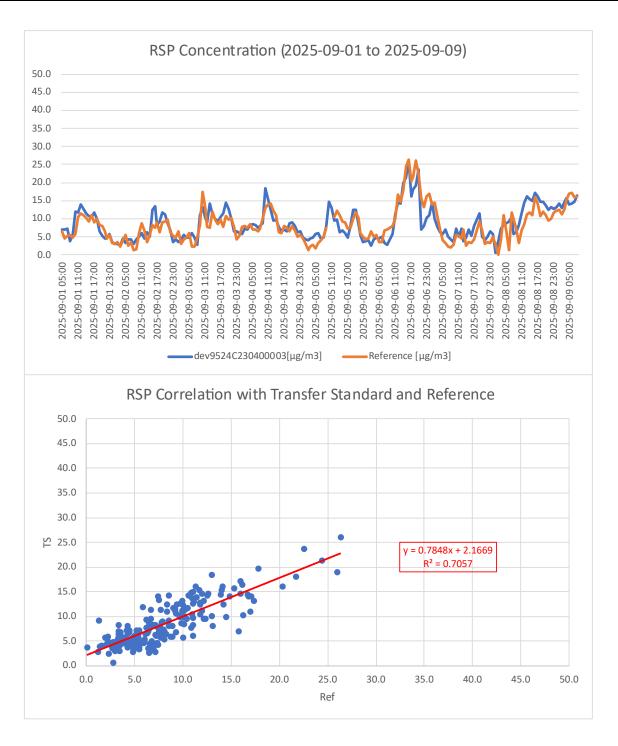
Traceability of Calibration Instrument:

Test Item	Calibration Instrument		
PM _{2.5} (FSP)	Location: Tsuen Wan Air Quality Monitoring Station		
PM ₁₀ (RSP)	Collocation Data Time: 2025-09-01 05:00 to 2025-09-09 08:00		

Calibration Result:

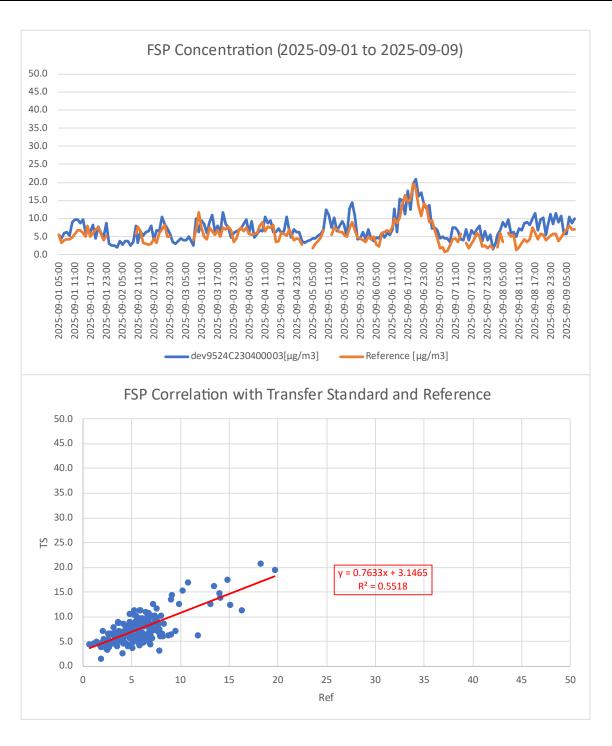
RSP:

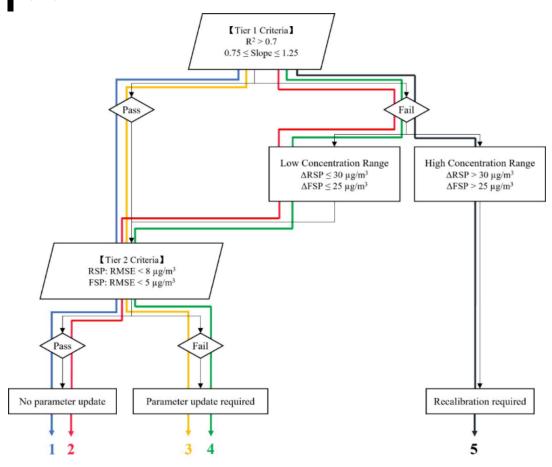
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.78	☑ PASS
Linearity (R ²)	> 0.70	0.71	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	26.2 μg/m ³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	2.6 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.76	☑ PASS
Linearity (R ²)	> 0.70	0.55	▼ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	19.0 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 µg/m³ for FSP	2.6 μg/m ³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z10		
Product Model:	MAS Dust Serial No. : dev9204Z250800010		
Issue Date:	2025-10-13		
Version	V1.1_20251013		

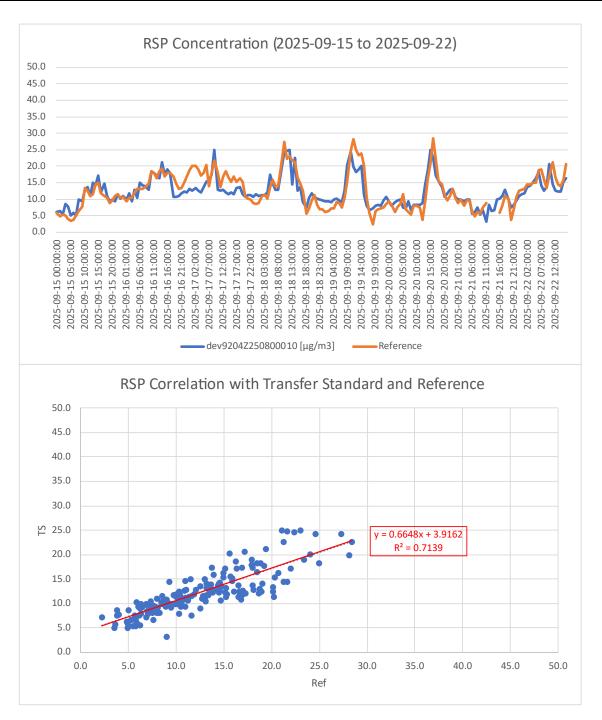
Traceability of Calibration Instrument:

Test Item	Calibration Instrument		
PM _{2.5} (FSP)	Location: HKUST Air Quality Research Supersite Facility		
PM ₁₀ (RSP)	Collocation Data Time: 2025-09-15 00:00 to 2025-09-22 16:00		

Calibration Result:

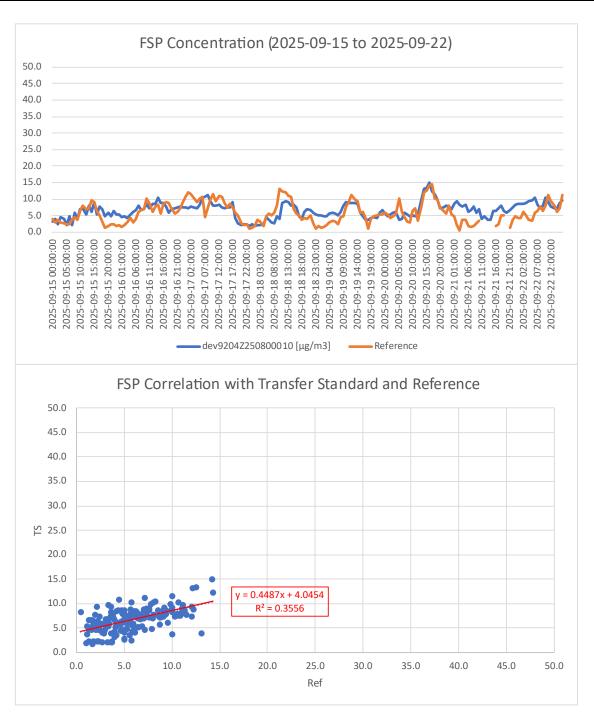
RSP:

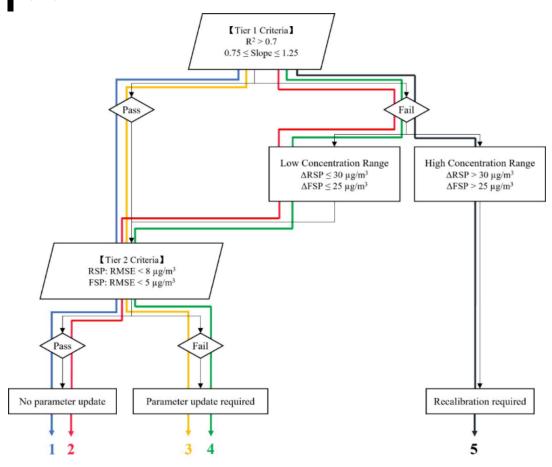
Performance Metric	Target Value	Actual Value	Result
renormance wether	laiget value	Actual value	Nesuit
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.66	ĭ FAIL
Linearity (R ²)	> 0.70	0.71	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	26.2 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	2.9 μg/m³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.45	ĭ FAIL
Linearity (R ²)	> 0.70	0.36	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	13.9 μg/m³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	2.7 μg/m ³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-09-Z11		
Product Model:	MAS Dust Serial No. : dev9204Z250800011		
Issue Date:	2025-10-13		
Version	V1.1_20251013		

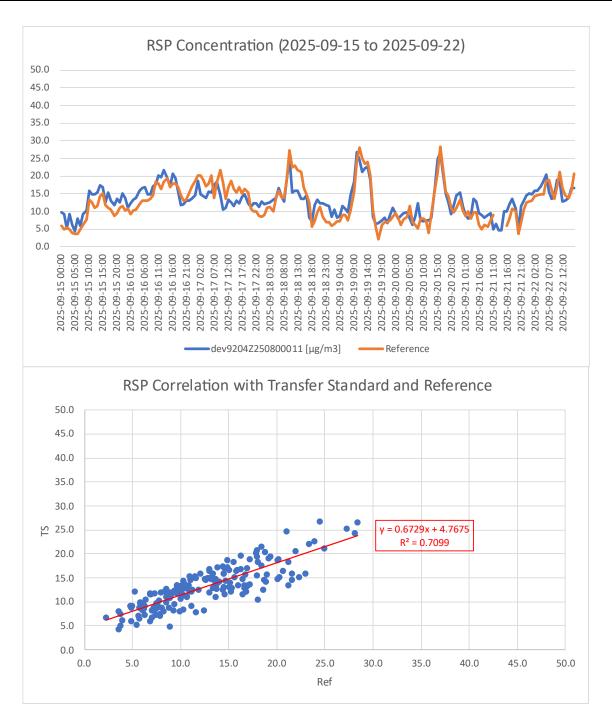
Traceability of Calibration Instrument:

Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Location: HKUST Air Quality Research Supersite Facility	
PM ₁₀ (RSP)	Collocation Data Time: 2025-09-15 00:00 to 2025-09-22 16:00	

Calibration Result:

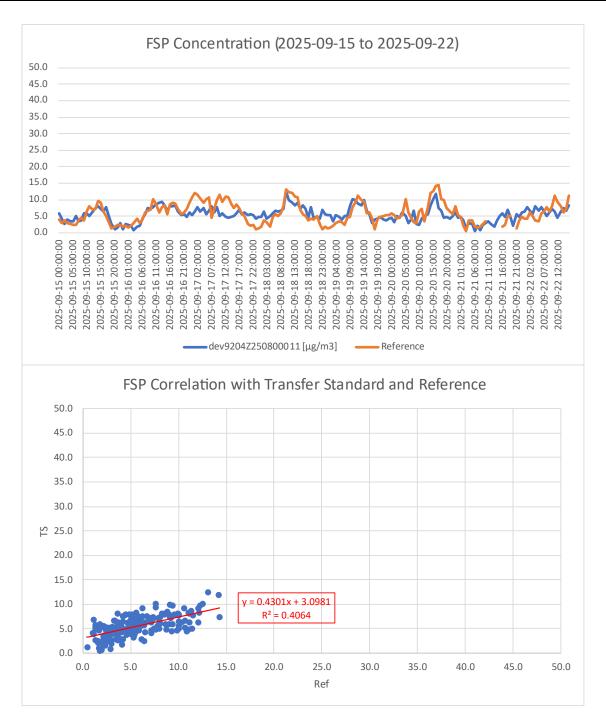
RSP:

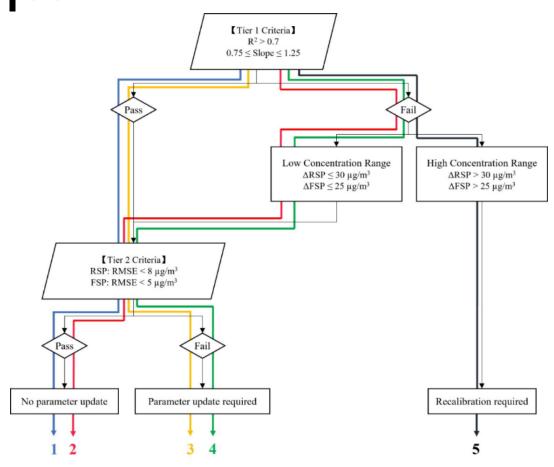
Performance Metric	Target Value	Actual Value	Result
	Target value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.67	ĭ FAIL
Linearity (R ²)	> 0.70	0.71	☑ PASS
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	26.2 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM
			concentration, during the
			collocation period, Tier 2 will
			apply.
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	3.0 μg/m ³	☑ PASS


Remark: Follow QAQC Protocol Path 2 which is Criteria Tier 1 failed while Tier 2 passed.

FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.43	ĭ FAIL
Linearity (R ²)	> 0.70	0.41	ĭ FAIL
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	13.9 μg/m ³	If Tier 1 criteria are not met
will be checked	range		due to narrow range of PM concentration, during the collocation period, Tier 2 will apply.
<u>Tier 2</u>			
Error (RMSE)	< 5 µg/m³ for FSP	2.4 μg/m ³	☑ PASS





Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z10		
Product Model:	MAS Dust Serial No. : dev9204Z250800010		
Issue Date:	2025-10-16		
Version	V1.0_20251016		

Traceability of Calibration Instrument:

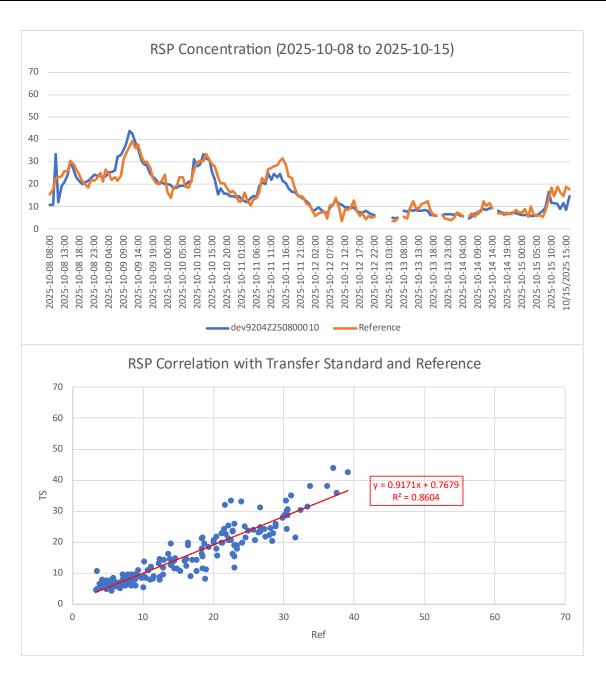
Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Location: HKUST Air Quality Research Supersite Facility	
PM ₁₀ (RSP)	Collocation Data Time: 2025-10-08 08:00 to 2025-10-15 16:00	

Calibration Result:

RSP:

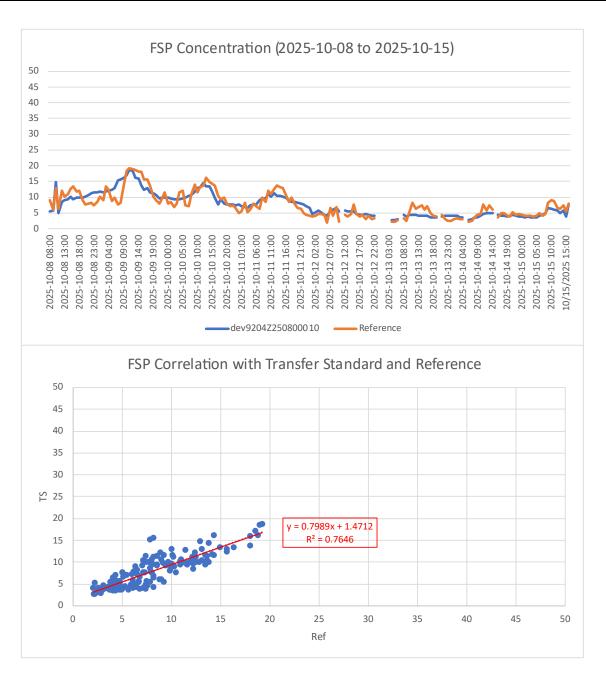
Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	0.92	☑ PASS		
Linearity (R ²)	> 0.70	0.86	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m ³ is low conc.	35.8 μg/m ³	Not applicable		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	3.5 μg/m ³	☑ PASS		

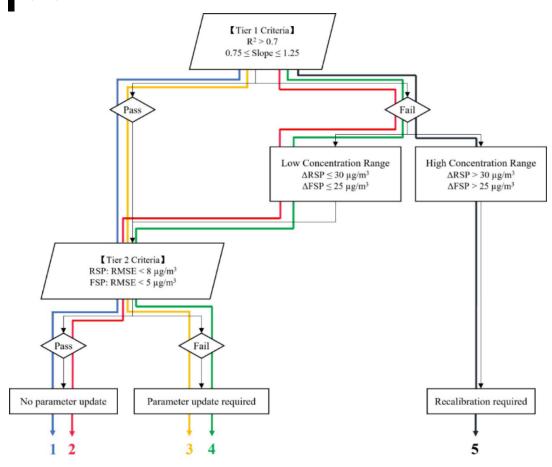
Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
Tier 1			
Bias (Slope)	1.00±0.25	0.80	☑ PASS
Linearity (R ²)	> 0.70	0.76	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \leq 25 \mu g/m^3$ is low conc.	17.2 μg/m ³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	2.0 μg/m ³	☑ PASS

Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.





Conclusion:

Prepared by: Yannis Qiu	Reviewed by:	George Zhang
-------------------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z11		
Product Model:	MAS Dust Serial No.: dev9204Z250800011		
Issue Date:	2025-11-12		
Version	V2.0_20251112		

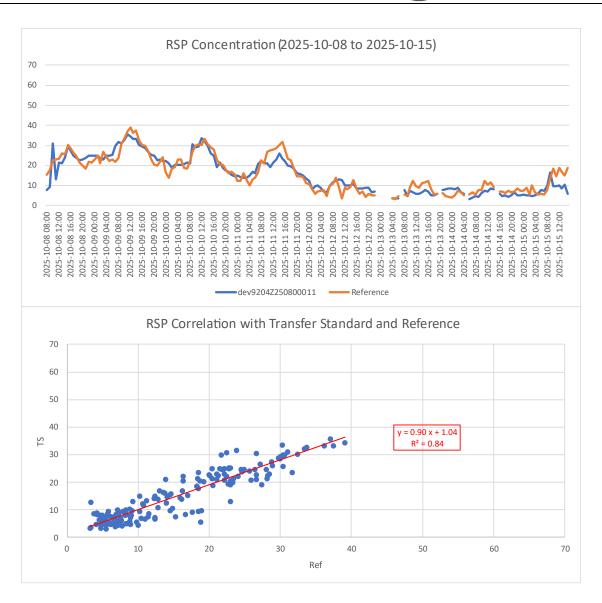
Traceability of Calibration Instrument:

Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Location: HKUST Air Quality Research Supersite Facility	
PM ₁₀ (RSP)	Collocation Data Time: 2025-10-08 08:00 to 2025-10-15 16:00	

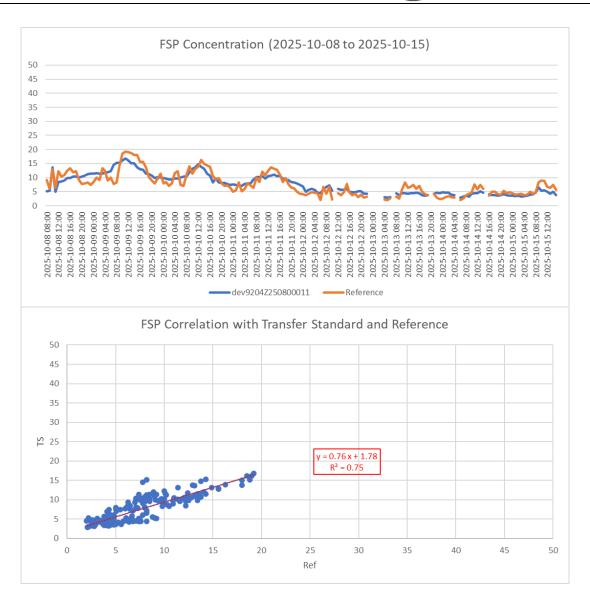
Calibration Result:

RSP:

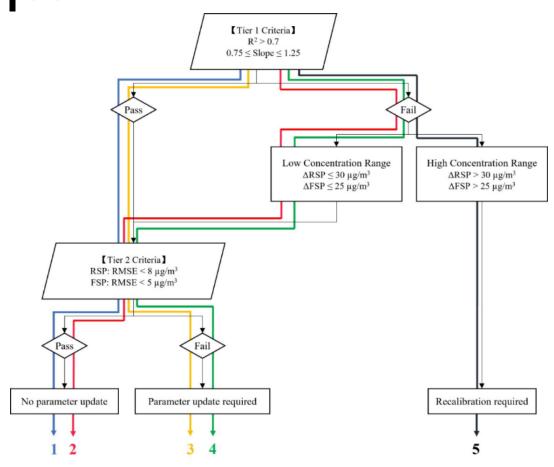
Performance Metric	Target Value	Actual Value	Result		
<u>Tier 1</u>	<u>Tier 1</u>				
Bias (Slope)	1.00±0.25	0.90	☑ PASS		
Linearity (R ²)	> 0.70	0.84	☑ PASS		
If Tier 1 fails, Conc. Range	RSP \leq 30 µg/m³ is low conc.	35.8 μg/m ³	Not applicable		
will be checked	range				
<u>Tier 2</u>					
Error (RMSE)	< 8 μg/m³ for RSP	3.7 μg/m ³	☑ PASS		


Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.

FSP:


Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.76	☑ PASS
Linearity (R ²)	> 0.70	0.75	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	17.2 μg/m³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	2.0 μg/m ³	☑ PASS

Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.



Conclusion:

Prepared by:	Yannis Qiu	Reviewed by:	George Zhang
--------------	------------	--------------	--------------

Product Information:

Report No.:	ZR/T CS.004-2025-10-Z12		
Product Model:	MAS Dust	Serial No.:	dev9204Z250800012
Issue Date:	2025-10-16		
Version	V1.0_20251016		

Traceability of Calibration Instrument:

Test Item	Calibration Instrument	
PM _{2.5} (FSP)	Location: HKUST Air Quality Research Supersite Facility	
PM ₁₀ (RSP)	Collocation Data Time: 2025-10-08 08:00 to 2025-10-15 16:00	

Calibration Result:

RSP:

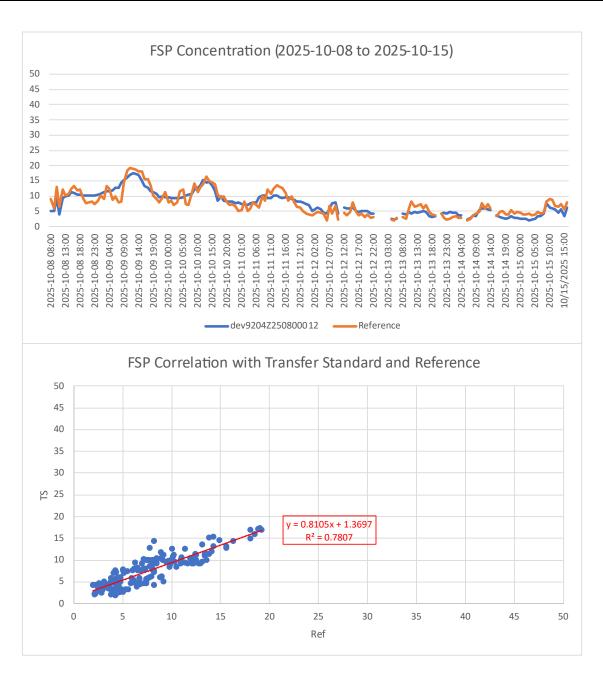
Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.92	☑ PASS
Linearity (R ²)	> 0.70	0.86	☑ PASS
If Tier 1 fails, Conc. Range	$RSP \leq 30 \ \mu g/m^3$ is low conc.	35.8 μg/m ³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 8 μg/m³ for RSP	3.5 μg/m ³	☑ PASS

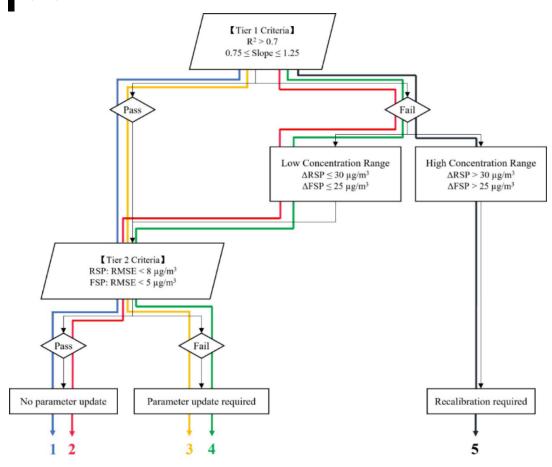
Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.


FSP:

Performance Metric	Target Value	Actual Value	Result
<u>Tier 1</u>			
Bias (Slope)	1.00±0.25	0.81	☑ PASS
Linearity (R ²)	> 0.70	0.78	☑ PASS
If Tier 1 fails, Conc. Range	$FSP \le 25 \mu g/m^3$ is low conc.	17.2 μg/m ³	Not applicable
will be checked	range		
<u>Tier 2</u>			
Error (RMSE)	< 5 μg/m³ for FSP	1.9 μg/m³	☑ PASS

Remark: Follow QAQC Protocol Path 1 which both Criteria Tier 1 and Tier 2 passed.





Conclusion:

Prepared by: Yannis Qiu	Reviewed by:	George Zhang
-------------------------	--------------	--------------

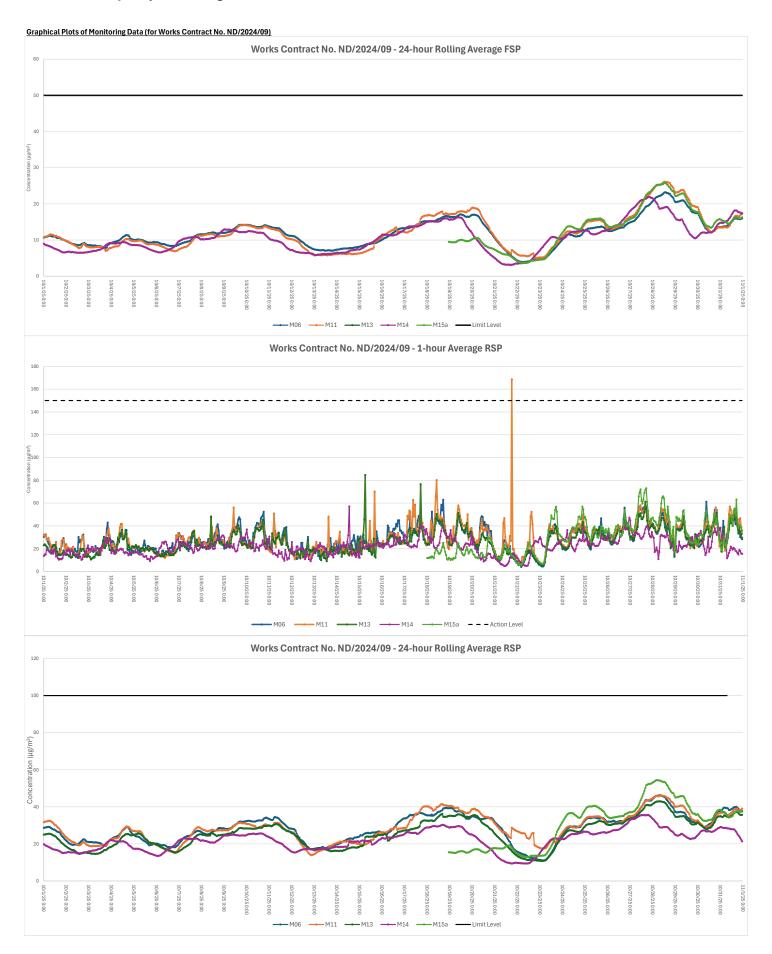
ANNEX D3

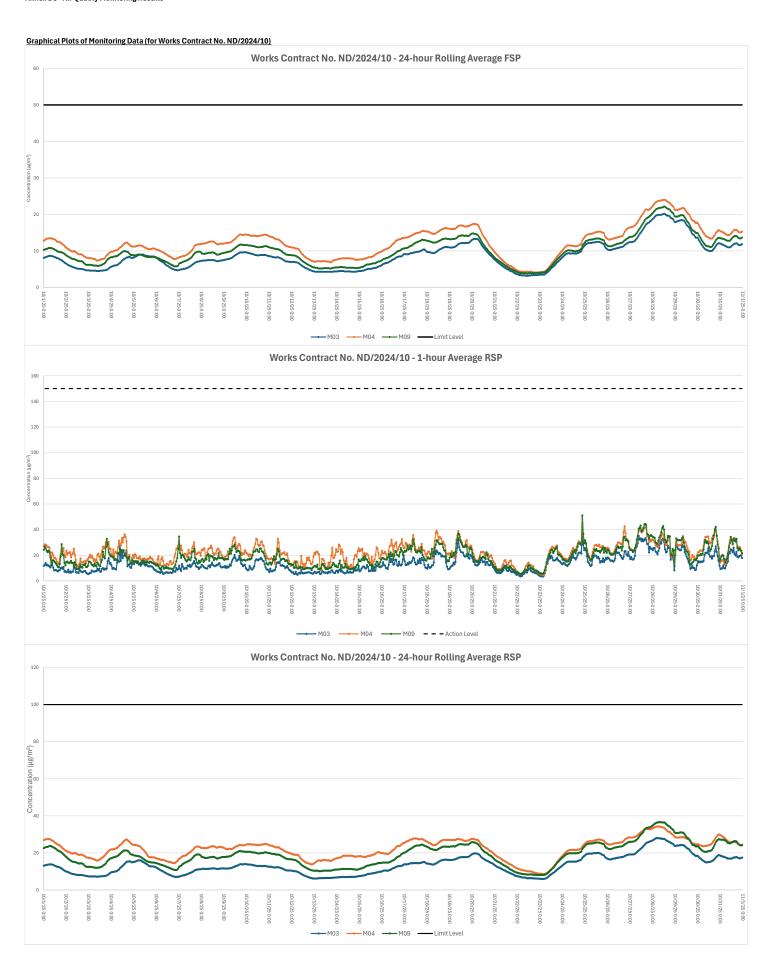
AIR QUALITY MONITORING RESULTS

Time	M03	M04	24-hou M06	r Rolling Av	erage FSP (μg/m³) M13	M14	M15a	M03	M04	1-h M06	our Average M09	RSP (µg/r	m³) M13	M14	M15a	M03	M04	24-hour M06	Rolling Av M09	erage RSP ((μg/m³) M13	M14	M15a
10/01/2025 00:00	8.1	12.8	10.7	10.3	10.8	9.8	9.0	null	11.8	27.2	30.4	24.3	32.2	23.1	13.7	null	13.1	26.9	28.7	22.6	31.7	25.0	19.8	null
10/01/2025 01:00	8.2	13.0	10.8	10.4	10.9	9.9	8.8	null	12.5	28.5	31.2	26.8	31.3	23.9	15.1	null	13.3	27.2	28.8	22.9	32.0	25.1	19.5	null
10/01/2025 02:00 10/01/2025 03:00	8.3 8.4	13.2 13.3	10.9 10.9	10.5 10.6	11.0 11.0	9.9	8.6 8.6	null null	14.0	28.1 27.5	32.6 28.4	25.4 23.5	32.1 28.2	23.0	14.9 19.5	null null	13.4 13.5	27.4 27.4	28.9 29.0	23.0	32.1 32.1	25.2 25.3	19.1 18.9	null null
10/01/2025 04:00	8.5	13.4	11.0	10.6	11.1	10.1	8.5	null	12.6	26.6	26.8	22.4	27.7	21.1	19.1	null	13.6	27.5	29.1	23.2	32.3	25.4	18.7	null
10/01/2025 05:00	8.6	13.4	11.1	10.8	11.3	10.1	8.4	null	11.8	26.4	24.5	23.7	29.7	18.3	18.9	null	13.7	27.5	29.1	23.5	32.4	25.5	18.4	null
10/01/2025 06:00 10/01/2025 07:00	8.6 8.7	13.5 13.5	11.2 11.2	10.8 10.8	11.4 11.6	10.2 10.1	8.3 8.2	null null	11.3 10.5	26.0 21.8	23.4	22.5 18.3	26.2 23.9	17.3 17.2	17.9 16.6	null null	13.8 13.8	27.5 27.3	29.1 28.8	23.7 23.8	32.5 32.3	25.5 25.4	18.1 17.9	null null
10/01/2025 08:00	8.6	13.4	11.1	10.8	11.5	10.1	8.1	null	12.1	15.2	15.8	12.5	18.9	16.7	17.2	null	13.8	26.9	28.5	23.6	32.1	25.2	17.6	null
10/01/2025 09:00 10/01/2025 10:00	8.6 8.5	13.4 13.3	11.0 11.0	10.7 10.6	11.5 11.4	10.1 10.0	8.0 7.8	null null	14.1	22.2	18.4 18.6	16.1 16.0	22.9 23.2	21.7 23.2	18.3 15.7	null null	13.7 13.5	26.7 26.3	28.1 27.8	23.3 23.0	31.7 31.2	25.0 24.6	17.3 17.0	null null
10/01/2025 10:00	8.4	13.2	11.0	10.5	11.4	10.0	7.7	null	8.2	17.8	17.8	15.4	21.3	22.8	19.7	null	13.3	26.0	27.8	22.8	30.6	24.4	17.0	null
10/01/2025 12:00	8.3	13.1	11.0	10.3	11.1	9.9	7.6	null	8.4	18.0	19.5	14.5	21.3	23.5	17.5	null	13.0	25.5	27.5	22.5	30.1	24.2	16.9	null
10/01/2025 13:00 10/01/2025 14:00	8.2 8.0	12.9 12.6	10.8 10.6	10.2	11.2 11.0	9.8 9.7	7.5 7.4	null null	8.5 8.0	17.1 14.8	17.3 15.6	13.4 12.2	26.2 16.9	21.0 17.6	13.1 13.9	null null	12.8 12.6	25.2 24.7	27.1 26.7	22.1	30.0 29.3	23.8	16.7 16.6	null null
10/01/2025 15:00	8.0	12.5	10.6	9.8	10.9	9.6	7.3	null	7.4	14.1	14.8	10.9	14.7	15.1	11.7	null	12.5	24.5	26.5	21.3	28.8	22.7	16.5	null
10/01/2025 16:00	7.9	12.5	10.6	9.8	10.8	9.5	7.2	null	8.2	13.2	14.4	10.6	17.0	14.5	10.4	null	12.4	24.3	26.3	21.1	28.5	22.3	16.3	null
10/01/2025 17:00 10/01/2025 18:00	7.7 7.6	12.5 12.2	10.6 10.4	9.7 9.7	10.7	9.4	7.0 6.9	null null	9.9	17.5 20.9	20.0 19.2	13.2 19.1	16.5 18.4	15.3 14.5	11.3 11.0	null null	12.1 11.9	24.0	26.1 25.2	20.8	27.7 27.2	21.8 21.1	16.0 15.7	null null
10/01/2025 19:00	7.5	12.0	10.3	9.6	10.1	9.0	6.7	null	10.4	22.1	22.3	28.6	27.0	15.0	10.8	null	11.6	23.0	24.4	20.2	26.3	20.5	15.3	null
10/01/2025 20:00 10/01/2025 21:00	7.2 7.1	11.8 11.7	10.2 10.1	9.5 9.4	10.2 10.1	9.0	6.6	null null	9.5 11.0	23.0 25.6	26.5 29.4	20.6	28.1 28.2	16.5 18.6	11.9 14.6	null null	11.1 10.8	22.5	23.8	19.7 19.2	25.7 25.2	20.2 19.8	15.1 15.1	null null
10/01/2025 22:00	6.8	11.4	10.1	9.2	10.1	8.7	6.6	null	7.1	19.0	24.1	14.2	21.9	17.4	17.5	null	10.4	21.7	22.7	18.7	24.5	19.3	15.1	null
10/01/2025 23:00	6.7	11.1	9.9	9.0	9.8	8.6	6.6	null	7.6	18.5	20.8	12.2	19.6	14.9	15.9	null	10.2	21.3	22.2	18.2	23.9	18.9	15.3	null
10/02/2025 00:00 10/02/2025 01:00	6.5 6.3	10.9 10.7	9.7 9.6	8.8	9.8 9.7	8.5 8.3	6.7 6.7	null null	6.8 7.0	23.6 20.7	18.6 20.4	14.7 15.1	24.0	14.6 15.1	15.8 17.8	null null	10.0 9.8	21.2 20.8	21.7 21.3	17.8 17.3	23.6 23.1	18.6 18.2	15.3 15.5	null null
10/02/2025 02:00	6.2	10.5	9.5	8.5	9.6	8.2	6.8	null	8.8	22.0	18.3	14.3	21.2	14.6	19.6	null	9.6	20.6	20.7	16.8	22.6	17.8	15.7	null
10/02/2025 03:00	6.0	10.4	9.3	8.3	9.4	8.1	6.8	null	6.5	21.8	18.4	13.8	18.6	13.3	19.1	null	9.4	20.3	20.3	16.4	22.2	17.5	15.6	null
10/02/2025 04:00 10/02/2025 05:00	5.9 5.8	10.2 10.0	9.2 9.1	8.2 8.0	9.3	7.9 7.8	6.7 6.6	null null	7.4 6.4	22.4 18.4	19.7 20.2	14.4 15.7	20.2 18.7	13.2 12.2	14.5 18.1	null null	9.1 8.9	20.2 19.8	20.0 19.8	16.1 15.8	21.9 21.5	17.2 16.9	15.4 15.4	null null
10/02/2025 06:00	5.7	9.9	9.0	7.9	8.9	7.7	6.7	null	7.2	20.6	19.2	13.9	18.2	12.7	18.7	null	8.7	19.6	19.6	15.4	21.1	16.7	15.4	null
10/02/2025 07:00	5.6 5.5	9.8	8.9 8.9	7.8 7.8	8.8 8.7	7.6 7.6	6.7 6.6	null null	7.2 11.4	21.6 25.1	18.4 18.8	14.2	21.8 15.6	16.2 14.4	17.5 17.0	null null	8.6 8.6	19.6 20.0	19.5 19.6	15.2 15.2	21.0 20.9	16.7 16.6	15.5 15.5	null null
10/02/2025 08:00 10/02/2025 09:00	5.5	10.0 9.9	8.8	7.8	8.7	7.6 7.4	6.6	null	10.1	20.5	20.1	11.6 14.6	14.5	14.4	17.0 14.8	null	8.4	19.9	19.6	15.2 15.1	20.9	16.3	15.5	null
10/02/2025 10:00	5.3	9.7	8.7	7.6	8.4	7.2	6.6	null	7.0	16.4	17.8	12.5	15.3	13.0	14.3	null	8.3	19.8	19.7	15.0	20.2	15.8	15.3	null
10/02/2025 11:00 10/02/2025 12:00	5.2 5.2	9.5 9.3	8.7 8.6	7.5 7.3	8.2 8.1	7.1 6.9	6.5	null null	6.5 6.5	11.0 12.2	17.4 16.9	9.2	15.0 13.2	14.9 12.2	13.8 14.2	null null	8.2 8.1	19.5 19.3	19.6 19.5	14.7 14.5	20.0 19.6	15.5 15.0	15.0 14.9	null null
10/02/2025 12:00	5.2	9.3	8.6	7.3	7.8	6.8	6.5	null	6.2	10.6	30.3	9.3	16.3	12.2	15.2	null	8.0	19.0	20.1	14.3	19.0	14.7	15.0	null
10/02/2025 14:00	5.1	9.1	8.6	7.2	7.8	6.8	6.5	null	10.5	13.2	25.7	10.8	18.6	15.6	12.3	null	8.1	18.9	20.5	14.3	19.3	14.6	14.9	null
10/02/2025 15:00 10/02/2025 16:00	5.1	9.1 9.1	8.7 8.9	7.2 7.2	7.9 8.1	6.8	6.5	null null	7.6 7.2	17.5 14.5	27.8 27.4	12.8 10.7	20.7 27.1	20.0 18.1	13.2 10.3	null null	8.1 8.1	19.1 19.1	21.0 21.6	14.4 14.4	19.5 20.0	14.8 14.9	15.0 15.0	null null
10/02/2025 17:00	5.0	8.9	9.0	7.1	8.5	6.9	6.5	null	6.9	14.3	29.4	10.3	31.6	19.7	10.9	null	8.0	19.0	22.0	14.2	20.6	15.1	15.0	null
10/02/2025 18:00 10/02/2025 19:00	5.0 4.9	8.7 8.5	9.1 9.2	6.9	9.0 8.9	7.0 7.0	6.5 6.5	null null	7.2 7.7	14.6 15.1	32.4 22.8	12.6 12.3	30.8 20.4	20.0 17.9	14.9 12.8	null null	7.9 7.8	18.7 18.4	22.5 22.5	14.0 13.3	21.1	15.4 15.5	15.1 15.2	null null
10/02/2025 19:00	4.9	8.4	9.2	6.4	8.6	7.0	6.6	null	7.7	15.1	17.0	13.3	15.7	17.6	16.6	null	7.8	18.1	22.5	13.0	20.8	15.5	15.4	null
10/02/2025 21:00	4.7	8.2	8.8	6.2	8.3	6.9	6.6	null	6.5	13.9	14.0	10.9	12.8	13.5	16.6	null	7.5	17.6	21.5	12.6	19.7	15.3	15.5	null
10/02/2025 22:00 10/02/2025 23:00	4.7 4.7	8.1 8.1	8.7 8.6	6.2	8.2 8.2	6.8	6.6 6.7	null null	5.8 5.3	16.1 17.2	17.1 16.7	10.9 12.0	15.0 17.2	12.9 15.1	20.3	null null	7.5 7.4	17.5 17.5	21.2	12.5 12.5	19.4 19.3	15.1 15.1	15.6 15.9	null null
10/03/2025 00:00	4.7	8.1	8.6	6.2	8.1	6.8	6.7	null	5.6	18.4	20.0	15.2	16.4	13.4	18.7	null	7.3	17.2	21.1	12.5	19.0	15.1	16.0	null
10/03/2025 01:00	4.6	8.0	8.6	6.2	8.0	6.8	6.8	null	6.3	20.3	17.2	14.9	18.3	13.0	19.9	null	7.3	17.2	21.0	12.5	18.9	15.0	16.1	null
10/03/2025 02:00 10/03/2025 03:00	4.6	8.0 8.0	8.6 8.5	6.2	8.0	6.7 6.7	6.8	null null	6.2 8.1	18.2 19.7	18.8 18.5	14.2 12.7	19.3 19.6	10.6 11.5	19.2 21.7	null null	7.2 7.3	17.1 17.0	21.0	12.5 12.4	18.8 18.8	14.8 14.7	16.1 16.2	null null
10/03/2025 04:00	4.6	7.9	8.5	6.1	8.0	6.7	7.0	null	7.4	18.1	17.5	12.4	20.1	11.6	21.4	null	7.3	16.8	20.9	12.3	18.8	14.7	16.5	null
10/03/2025 05:00 10/03/2025 06:00	4.6	7.8 7.8	8.5 8.5	6.0	8.0	6.7 6.7	7.0 7.0	null null	7.3 7.2	15.7 17.0	17.3 19.2	11.4 13.3	19.6 18.6	13.0 12.3	19.2 18.5	null null	7.3 7.3	16.7 16.5	20.8	12.2 12.1	18.9 18.9	14.7 14.7	16.5 16.5	null null
10/03/2025 07:00	4.6	7.7	8.5	6.0	8.1	6.7	7.0	null	7.7	14.4	22.3	11.9	20.3	14.7	18.4	null	7.3	16.2	20.9	12.0	18.8	14.6	16.6	null
10/03/2025 08:00	4.5	7.4	8.4	6.0	8.1	6.7	7.1	null	7.6	16.3	16.7	11.2	16.7	16.3	20.4	null	7.2	15.9	20.8	12.0	18.9	14.7	16.7	null
10/03/2025 09:00 10/03/2025 10:00	4.5 4.5	7.4 7.4	8.3 8.3	5.9 5.9	8.1 8.1	6.7 6.7	7.2 7.3	null null	9.4 8.3	20.3	15.4 17.5	14.4 13.1	14.9 14.3	14.7 14.5	20.8 19.3	null null	7.1 7.2	15.9 16.1	20.7	12.0 12.0	18.9 18.9	14.7 14.8	16.9 17.2	null null
10/03/2025 11:00	4.5	7.5	8.3	6.0	8.1	6.7	7.3	null	9.6	19.0	14.7	11.9	17.9	20.1	18.2	null	7.3	16.4	20.5	12.2	19.0	15.0	17.3	null
10/03/2025 12:00 10/03/2025 13:00	4.6	7.6 7.7	8.3 8.2	6.0	8.1	6.8	7.4	null null	7.1	16.4 20.5	14.5 19.0	11.6 14.7	16.0 21.1	14.9 20.9	15.5 20.6	null	7.3 7.4	16.6 17.0	20.4	12.3 12.5	19.1 19.3	15.1 15.5	17.4 17.6	null null
10/03/2025 14:00	4.6	7.8	8.2	6.2	8.1	6.9	7.7	null	9.6	23.6	20.0	16.4	18.3	21.7	22.7	null	7.4	17.4	19.7	12.7	19.3	15.8	18.0	null
10/03/2025 15:00	4.6	7.8	8.1	6.4	8.1	6.9	7.8	null	10.0	26.7	22.8	22.7	24.7	26.9	20.9	null	7.5	17.8	19.5	13.1	19.4	16.0	18.4	null
10/03/2025 16:00 10/03/2025 17:00	4.7	7.9 8.0	8.0 7.9	6.5	7.8	7.0 7.0	8.0 8.3	null null	8.8 9.6	25.1 26.1	21.4	18.6 17.6	24.1 25.3	30.5 20.6	24.7 26.3	null null	7.5 7.6	18.2 18.7	19.3 19.1	13.5 13.8	19.3 19.1	16.6 16.6	19.0 19.6	null null
10/03/2025 18:00	4.8	8.5	7.8	7.0	7.0	7.0	8.6	null	9.0	30.4	27.1	26.3	29.3	22.6	29.6	null	7.7	19.4	18.9	14.3	19.0	16.7	20.2	null
10/03/2025 19:00 10/03/2025 20:00	4.8 5.0	8.8 9.0	8.0 8.6	7.4	7.1 7.3	7.2 7.3	8.8 8.9	null null	9.8 15.3	27.1 29.4	37.3 42.9	32.8 28.6	32.9 33.2	25.6 29.4	25.0 25.4	null null	7.8 8.1	19.9 20.5	19.5 20.6	15.2 15.8	19.5 20.2	17.0 17.5	20.7	null null
10/03/2025 21:00	5.2	9.3	8.8	7.9	7.6	7.5	9.1	null	17.7	30.3	31.4	22.4	38.0	23.1	26.8	null	8.6	21.1	21.3	16.3	21.3	17.9	21.5	null
10/03/2025 22:00	5.4	9.5	9.0	8.1	7.8	7.6	9.2	null	13.5	24.7	32.1	20.7	31.2	19.0	29.3	null	8.9	21.5	21.9	16.7	22.0	18.2	21.9	null
10/03/2025 23:00 10/04/2025 00:00	5.6 5.7	9.7 9.8	9.1 9.2	8.2 8.3	7.8 7.9	7.6 7.7	9.2 9.1	null null	14.0 12.3	25.1 20.7	27.7 25.5	19.3 19.4	22.4 22.3	18.8 17.6	27.5 16.1	null null	9.3 9.6	21.8 21.9	22.4 22.6	17.0 17.2	22.2 22.4	18.3 18.5	22.1 22.0	null null
10/04/2025 01:00	5.8	9.8	9.3	8.3	8.0	7.8	9.1	null	9.4	18.3	26.8	19.1	23.5	20.9	18.3	null	9.7	21.8	23.0	17.4	22.7	18.8	21.9	null
10/04/2025 02:00 10/04/2025 03:00	5.9 6.0	9.9 10.0	9.4 9.5	8.4 8.5	8.1 8.2	7.9 8.0	9.1 9.1	null null	10.2 9.7	24.6 18.6	26.1 24.2	18.2 16.3	24.6 21.5	18.8 18.5	17.8 15.5	null null	9.8 9.9	22.1 22.1	23.3 23.6	17.5 17.7	22.9 23.0	19.2 19.5	21.9 21.6	null null
10/04/2025 04:00	6.0	10.1	9.5	8.5	8.2	8.0	9.0	null	9.2	22.7	21.3	17.1	20.3	16.6	15.7	null	10.0	22.3	23.7	17.9	23.0	19.7	21.4	null
10/04/2025 05:00	6.1	10.2	9.6	8.6	8.3	8.1	9.1	null	8.9	22.3	21.0	16.2	21.0	16.6	19.0	null	10.1	22.5	23.9	18.1	23.0	19.8	21.3	null
10/04/2025 06:00 10/04/2025 07:00	6.1	10.2 10.4	9.7 9.8	8.6 8.8	8.3 8.3	8.2 8.4	9.1 9.2	null null	14.2 15.4	21.4 26.3	23.5 30.1	16.5 21.7	20.0 24.5	23.9 28.6	19.1 18.3	null null	10.3 10.7	22.7 23.2	24.0 24.4	18.2 18.6	23.1	20.3	21.4 21.4	null null
10/04/2025 08:00	6.5	10.7	9.9	9.0	8.5	8.5	9.2	null	14.9	31.4	25.7	21.2	32.1	26.5	18.8	null	11.0	23.8	24.7	19.0	23.9	21.3	21.3	null
10/04/2025 09:00 10/04/2025 10:00	6.7 6.9	10.9 11.1	10.1 10.3	9.2 9.4	8.8 9.1	8.7 8.9	9.2 9.3	null null	29.0 15.6	28.6 27.7	30.2 31.1	24.9 23.3	38.6 41.8	33.4 33.6	19.6 20.2	null null	11.8 12.1	24.2 24.5	25.4 25.9	19.5 19.9	24.9 26.0	22.1 22.9	21.3 21.3	null null
10/04/2025 11:00	7.3	11.1	10.5	9.4	9.4	9.1	9.4	null	23.9	33.4	34.6	24.1	41.8	36.6	19.1	null	12.7	25.1	26.8	20.4	27.0	23.6	21.3	null
10/04/2025 12:00	7.5	11.6	10.8	9.8	9.7	9.3	9.5	null	17.7	29.9	28.9	22.2	32.5	28.4	19.7	null	13.1	25.6	27.4	20.8	27.7	24.1	21.5	null
10/04/2025 13:00 10/04/2025 14:00	7.7 7.8	11.8 12.1	11.0 11.1	9.9	9.9	9.4 9.5	9.4 9.4	null null	19.4 20.6	33.9 36.2	28.3 30.3	23.9	31.1 31.2	28.4 29.9	17.1 16.0	null null	13.6 14.1	26.2 26.7	27.7 28.2	21.2 21.4	28.1 28.7	24.4	21.4 21.1	null null
10/04/2025 15:00	8.0	12.2	11.3	9.9	10.2	9.5	9.3	null	21.3	34.5	36.6	19.8	32.6	36.0	17.0	null	14.6	27.0	28.7	21.3	29.0	25.2	20.9	null
10/04/2025 16:00	8.2	12.3 12.3	11.4 11.3	9.8 9.8	10.3 10.3	9.5 9.5	9.3 9.1	null null	23.8	30.8	36.3 19.1	18.3 15.9	30.9 24.2	33.2 20.6	16.9 16.3	null null	15.2	27.3 26.9	29.4 29.1	21.3 21.2	29.3 29.2	25.3 25.3	20.6 20.2	null null
10/04/2025 17:00 10/04/2025 18:00	8.2 8.3	11.9	11.3	9.8	10.3	9.5	9.1	null	11.4 12.5	17.8 18.4	18.6	17.5	28.9	23.3	16.3 14.3	null	15.3 15.4	26.4	28.7	20.8	29.2	25.3	19.5	null
10/04/2025 19:00	8.4	11.8	11.0	9.3	10.1	9.4	8.8	null	13.2	20.4	19.1	18.7	23.9	21.7	15.6	null	15.5	26.1	28.0	20.2	28.8	25.1	19.1	null
10/04/2025 20:00 10/04/2025 21:00	8.3 8.1	11.5 11.3	10.5 10.3	9.0	10.0 9.8	9.3 9.3	8.8 8.7	null null	10.6 10.1	15.1 14.0	14.9 14.7	13.6 13.6	20.0 19.1	19.6 19.1	17.0 17.0	null null	15.4 15.0	25.5 24.9	26.8 26.1	19.6 19.2	28.3 27.5	24.7 24.6	18.8 18.4	null null
10/04/2025 22:00	8.1	11.2	10.2	8.9	9.7	9.3	8.6	null	13.1	18.1	18.0	16.3	22.3	22.0	16.5	null	15.0	24.6	25.5	19.1	27.1	24.7	17.9	null
10/04/2025 23:00	8.2	11.2	10.1	8.9	9.7	9.3	8.6	null	14.0	20.2	18.1	15.6	20.4	22.2	16.3	null	15.0	24.4	25.1	18.9	27.0	24.8	17.4	null
10/05/2025 00:00 10/05/2025 01:00	8.2 8.4	11.2 11.2	10.1 10.0	8.8	9.7 9.7	9.4 9.4	8.7 8.6	null null	13.2 14.7	17.8 20.9	16.7 17.6	15.1 15.3	20.8	21.2 21.7	17.5 16.9	null null	15.1 15.3	24.3 24.4	24.8	18.7 18.6	27.0 26.9	25.0 25.0	17.4 17.4	null null
10/05/2025 02:00	8.5	11.3	10.1	8.8	9.7	9.5	8.6	null	15.4	19.7	20.5	15.4	21.3	23.3	16.7	null	15.5	24.2	24.1	18.5	26.7	25.2	17.3	null
10/05/2025 03:00 10/05/2025 04:00	8.6 8.8	11.4 11.4	10.1 10.2	8.9 9.0	9.7 9.8	9.5 9.6	8.6 8.6	null null	14.0 15.1	17.8 18.0	21.0 18.5	14.6 15.4	21.6 21.7	21.7 21.7	17.1 16.3	null null	15.7 15.9	24.1	24.0 23.9	18.4 18.3	26.7 26.8	25.3 25.6	17.4 17.4	null null
10/05/2025 04:00	8.9	11.4	10.2	9.0	9.9	9.7	8.6	null	12.9	17.4	18.4	13.6	22.4	21.7	15.5	null	16.1	23.7	23.8	18.2	26.8	25.8	17.4	null
10/05/2025 06:00	9.0	11.5	10.1	9.0	9.9	9.6	8.5	null	13.2	19.0	17.0	13.5	20.9	18.6	14.9	null	16.0	23.6	23.5	18.1	26.9	25.5	17.1	null
10/05/2025 07:00 10/05/2025 08:00	9.0 9.0	11.5 11.4	10.1 10.0	9.0 8.9	9.9	9.6 9.5	8.5 8.4	null null	11.8 12.9	16.6 16.1	17.1 18.0	14.0 14.9	19.5 19.3	19.8 20.5	15.1 15.2	null null	15.9 15.8	23.2 22.6	23.0 22.7	17.8 17.5	26.7 26.1	25.2 24.9	17.0 16.8	null null
10/05/2025 09:00	9.0	11.3	10.0	8.8	9.7	9.4	8.3	null	13.8	17.4	18.8	15.7	19.9	20.6	15.2		15.2	22.1	22.2	17.1	25.4	24.4	16.6	null

Time	M03	M04	24-hou M06	r Rolling Av	erage FSP (μg/m³) M13	M14	M15a	M03	M04	1-h M06	our Average	RSP (µg/ı	m³) M13	M14	M15a	M03	M04	24-hour M06	Rolling Av	erage RSP ((μg/m³) M1 3	M14	M15a
10/05/2025 10:00	9.0	11.2	9.9	8.7	9.5	9.3	8.2	null	14.1	17.1	23.1	15.8	19.4	20.1	13.4	null	15.1	21.7	21.8	16.8	24.4	23.8	16.4	null
10/05/2025 11:00	8.8	11.0	9.7	8.6	9.3	9.2	8.1	null	12.8	17.6	27.2	15.4	18.3	17.8	12.9	null	14.7	21.0	21.5	16.4	23.4	23.0	16.1	null
10/05/2025 12:00	8.7	10.9	9.6	8.5 8.4	9.1	9.1	8.0	null	12.0	16.9	22.9 19.2	13.8	18.7	20.1	13.3	null	14.4	20.5	21.3	16.1	22.9	22.7	15.8	null
10/05/2025 13:00 10/05/2025 14:00	8.7 8.6	10.8 10.6	9.4	8.4	8.9	9.1 9.0	7.9 7.8	null null	12.8 12.1	16.5 17.1	21.0	14.7 15.3	19.7 19.5	20.6	13.7 11.1	null null	14.1	19.8 19.0	20.9	15.7 15.5	22.4	22.4	15.7 15.5	null null
10/05/2025 15:00	8.6	10.5	9.3	8.3	8.8	9.0	7.6	null	11.4	16.9	22.5	14.4	19.7	19.0	11.0	null	13.4	18.2	19.9	15.3	21.4	21.3	15.2	null
10/05/2025 16:00	8.5	10.5	9.3	8.3	8.8	9.0	7.5	null	11.4	17.6	21.8	14.1	20.9	18.2	10.9	null	12.9	17.7	19.3	15.1	20.9	20.6	15.0	null
10/05/2025 17:00 10/05/2025 18:00	8.5 8.5	10.5 10.5	9.3	8.4	8.9 8.9	9.0 9.0	7.4	null null	11.4	18.7 17.5	20.3	15.1 14.8	20.3 19.3	20.2 19.6	9.3 13.3	null	12.9 12.8	17.7 17.7	19.4 19.5	15.1 14.9	20.8	20.6	14.7	null null
10/05/2025 19:00	8.5	10.6	9.3	8.3	8.9	9.0	7.2	null	11.2	17.7	20.0	14.2	20.2	19.9	12.7	null	12.7	17.6	19.5	14.8	20.2	20.4	14.5	null
10/05/2025 20:00	8.5	10.7	9.4	8.4	8.9	9.0	7.1	null	10.5	16.4	20.8	14.0	18.3	19.1	11.2	null	12.7	17.6	19.8	14.8	20.2	20.4	14.3	null
10/05/2025 21:00 10/05/2025 22:00	8.5 8.4	10.7 10.6	9.5 9.4	8.4 8.3	8.9	9.0 9.0	7.0 6.9	null null	9.3 8.5	14.4 14.5	20.5 19.6	13.5 13.4	16.9 16.0	17.9 16.4	11.6 12.6	null null	12.7 12.5	17.6 17.5	20.0	14.8 14.7	20.1 19.8	20.3	14.1	null null
10/05/2025 23:00	8.3	10.5	9.4	8.2	8.8	8.9	6.8	null	8.4	13.5	20.3	12.2	15.5	16.1	12.9	null	12.3	17.2	20.2	14.5	19.6	19.8	13.8	null
10/06/2025 00:00	8.1	10.4	9.4	8.2	8.7	8.9	6.8	null	7.5	12.8	15.7	12.0	16.2	16.1	13.9	null	12.0	17.0	20.1	14.4	19.4	19.6	13.6	null
10/06/2025 01:00 10/06/2025 02:00	7.9 7.7	10.3 10.3	9.4	8.1 8.0	8.7	8.9 8.8	6.7	null	7.2 7.1	16.9 19.1	17.3 15.9	13.1 11.3	16.4 15.7	17.0 16.7	13.6 17.6	null	11.7 11.4	16.8 16.8	20.1 19.9	14.3 14.1	19.2 19.0	19.4 19.1	13.5 13.5	null null
10/06/2025 02:00	7.7	10.3	9.3	7.9	8.6 8.5	8.8	6.6	null null	6.9	12.3	13.7	9.9	13.8	14.4	20.4	null null	11.4	16.6	19.9	13.9	19.0	18.8	13.5	null
10/06/2025 04:00	7.3	9.9	9.0	7.7	8.4	8.7	6.6	null	6.2	12.2	13.9	9.3	13.3	14.0	20.9	null	10.7	16.3	19.4	13.7	18.3	18.5	13.8	null
10/06/2025 05:00	7.2	9.9	9.0	7.6	8.3	8.6	6.6	null	8.8	17.0	15.3	10.0	15.4	13.3	22.3	null	10.5	16.3	19.3	13.5	18.0	18.2	14.1	null
10/06/2025 06:00 10/06/2025 07:00	7.0 6.9	9.7 9.6	8.9 8.9	7.5 7.4	8.2 8.1	8.5 8.4	6.7	null null	6.9 5.5	18.5 15.7	18.2 18.5	11.4 11.2	16.4 13.2	15.5 13.5	25.6 25.7	null null	10.3	16.3 16.3	19.3 19.4	13.4 13.3	17.9 17.6	18.1 17.8	14.6 15.0	null null
10/06/2025 08:00	6.7	9.5	8.9	7.3	8.0	8.3	6.9	null	5.8	12.3	15.2	9.5	12.7	13.4	24.4	null	9.7	16.1	19.3	13.1	17.3	17.5	15.4	null
10/06/2025 09:00	6.4	9.3	8.8	7.2	7.8	8.3	6.9	null	6.2	12.2	16.4	10.1	12.1	15.3	26.4	null	9.4	15.9	19.2	12.9	17.0	17.3	15.9	null
10/06/2025 10:00 10/06/2025 11:00	6.2 6.0	9.1 9.0	8.7 8.6	7.0 6.9	7.7 7.6	8.2 8.2	7.0 7.1	null null	6.7	12.0 13.4	17.8 17.2	11.0 9.9	13.4 14.5	15.1 17.6	26.0 23.5	null	9.1	15.7 15.5	19.0 18.5	12.7 12.4	16.7 16.6	17.1 17.1	16.4 16.8	null null
10/06/2025 11:00	5.9	8.8	8.5	6.8	7.5	8.1	7.1	null	6.3	13.4	17.2	10.4	14.5	17.1	20.0	null	8.6	15.3	18.3	12.4	16.4	16.9	17.1	null
10/06/2025 13:00	5.7	8.6	8.5	6.6	7.4	8.0	7.4	null	6.4	12.4	18.4	9.6	14.0	15.7	19.5	null	8.3	15.2	18.3	12.1	16.2	16.7	17.4	null
10/06/2025 14:00	5.5	8.5	8.4	6.5	7.3	7.9	7.5	null	6.4	15.0	20.9	9.6	16.8	14.7	18.7	null	8.1	15.1	18.3	11.8	16.1	16.5	17.7	null
10/06/2025 15:00 10/06/2025 16:00	5.4 5.2	8.4 8.2	8.4 8.4	6.3	7.2 7.1	7.9 7.8	7.6 7.7	null null	6.6	15.6 13.0	20.7	9.7 9.4	14.5 16.0	14.4 14.5	16.2 17.3	null	7.9 7.7	15.0 14.8	18.2 18.2	11.6 11.4	15.9 15.7	16.3 16.1	17.9 18.2	null null
10/06/2025 17:00	5.1	8.0	8.4	6.1	7.1	7.7	7.9	null	6.6	13.6	25.0	8.9	15.7	15.2	20.1	null	7.5	14.6	18.4	11.2	15.5	15.9	18.6	null
10/06/2025 18:00	5.0	7.8	8.4	5.9	7.0	7.6	8.0	null	7.9	14.1	17.8	9.8	14.7	14.4	20.6	null	7.3	14.5	18.3	11.0	15.3	15.7	18.9	null
10/06/2025 19:00	4.9	7.8	8.4	5.8	6.9	7.6	8.2	null	7.4	18.7	19.0	11.0	16.0	15.9	21.0	null	7.2	14.5	18.2	10.8	15.1	15.6	19.3	null
10/06/2025 20:00 10/06/2025 21:00	4.8	7.8 7.9	8.4 8.4	5.8 5.8	6.9 7.0	7.5 7.5	8.5 8.8	null null	7.2 10.1	21.1 25.1	22.3 31.7	12.3 15.3	19.6 31.2	16.5 17.7	23.4 25.8	null null	7.0 7.1	14.7 15.2	18.3 18.7	10.8 10.8	15.1 15.7	15.4 15.4	19.8 20.4	null null
10/06/2025 22:00	4.7	8.0	8.6	5.8	7.1	7.5	9.2	null	8.6	25.5	29.1	17.9	28.0	19.7	28.0	null	7.1	15.6	19.1	11.0	16.2	15.6	21.0	null
10/06/2025 23:00	4.7	8.1	8.6	6.0	7.3	7.5	9.5	null	9.2	27.6	29.5	24.8	33.9	20.7	28.1	null	7.1	16.2	19.5	11.6	17.0	15.8	21.6	null
10/07/2025 00:00 10/07/2025 01:00	4.8	8.3 8.3	8.8 8.9	6.5	7.5 7.6	7.6 7.7	9.7 9.8	null	12.0	27.8 24.3	33.8 31.6	34.6	32.0 30.9	23.4	21.7 18.6	null null	7.3 7.4	16.8	20.3	12.5	17.7	16.1	22.0	null
10/07/2025 02:00	4.9 4.9	8.4	9.0	6.7	7.6	7.7	10.0	null null	9.3 7.8	27.6	31.0	21.7 18.1	28.6	26.1 22.7	25.8	null	7.4	17.1 17.5	21.5	12.9 13.1	18.3 18.8	16.5 16.7	22.2 22.5	null null
10/07/2025 03:00	5.0	8.5	9.1	6.9	7.8	7.7	10.1	null	13.2	23.9	28.7	20.1	28.7	22.2	24.0	null	7.7	18.0	22.1	13.6	19.4	17.0	22.7	null
10/07/2025 04:00	5.0	8.6	9.2	7.0	7.9	7.8	10.3	null	11.2	19.8	29.7	20.4	31.2	26.2	24.8	null	7.9	18.3	22.8	14.0	20.2	17.5	22.8	null
10/07/2025 05:00 10/07/2025 06:00	5.1 5.1	8.6 8.7	9.3	7.1 7.2	8.0 8.1	7.9 8.0	10.4 10.4	null null	9.2	19.0 21.3	27.7 25.8	18.9 17.5	28.7 25.5	22.7 21.6	24.7 25.0	null null	7.9 8.0	18.4 18.5	23.3	14.4	20.7	17.9 18.2	22.9	null null
10/07/2025 07:00	5.2	8.8	9.4	7.2	8.1	8.1	10.4	null	10.2	21.0	23.4	16.2	21.8	21.3	23.7	null	8.2	18.7	23.8	14.7	21.5	18.5	22.8	null
10/07/2025 08:00	5.3	8.9	9.5	7.4	8.2	8.2	10.5	null	9.5	19.1	22.0	15.1	21.3	19.8	23.5	null	8.4	19.0	24.1	15.1	21.8	18.8	22.8	null
10/07/2025 09:00	5.4	9.1	9.6	7.5	8.4	8.3	10.6	null	12.0	20.5	20.8	16.2	26.0	23.3	26.5	null	8.6	19.4	24.3	15.4	22.4	19.1	22.8	null
10/07/2025 10:00 10/07/2025 11:00	5.5 5.7	9.3 9.5	9.6 9.7	7.7 7.8	8.6 8.9	8.4 8.6	10.7 10.7	null null	11.5 12.6	24.2	17.9 20.3	18.5 16.7	29.8	24.5 25.7	22.6 22.7	null null	8.8 9.1	19.9 20.2	24.3	15.7 15.9	23.1	19.5 19.8	22.6 22.6	null null
10/07/2025 12:00	5.8	9.7	9.9	8.0	9.1	8.7	10.7	null	10.7	21.2	23.0	16.2	27.7	25.9	20.2	null	9.2	20.5	24.6	16.2	24.3	20.2	22.6	null
10/07/2025 13:00	6.0	10.0	10.1	8.2	9.4	8.9	10.8	null	11.6	22.5	25.6	18.4	31.0	30.0	20.9	null	9.5	21.0	24.9	16.6	25.0	20.8	22.7	null
10/07/2025 14:00	6.2	10.3	10.4	8.5	9.8	9.2 9.5	10.8	null	12.9	25.7	29.8	22.8	34.4	33.5	19.1	null	9.7	21.4	25.3	17.1	25.7	21.6	22.7	null
10/07/2025 15:00 10/07/2025 16:00	6.4	10.7 11.2	10.7 11.0	8.9 9.2	10.1	9.8	10.8 10.8	null null	13.9 15.6	27.3 30.1	31.2 32.9	23.0 25.3	33.2 36.1	35.3 35.3	16.3 17.4	null null	10.0 10.4	21.9 22.6	25.7 26.2	17.7 18.3	26.5 27.3	22.5 23.3	22.7 22.7	null null
10/07/2025 17:00	6.8	11.5	11.1	9.5	10.7	10.0	10.9	null	13.6	23.7	27.2	18.0	28.7	25.5	23.0	null	10.7	23.0	26.3	18.7	27.9	23.7	22.8	null
10/07/2025 18:00	6.9	11.7	11.2	9.6	10.9	10.1	10.9	null	11.3	21.0	25.8	16.9	27.1	21.8	21.6	null	10.9	23.3	26.7	19.0	28.4	24.1	22.9	null
10/07/2025 19:00 10/07/2025 20:00	7.0 7.1	11.7 11.8	11.4 11.5	9.7 9.8	11.1 11.2	10.4 10.5	10.8 10.7	null null	11.0 10.6	21.1 21.9	27.3 25.1	14.2 13.5	24.6 25.9	28.1 22.5	19.8 18.3	null null	11.0 11.1	23.4	27.0 27.1	19.1 19.2	28.8	24.6 24.8	22.8 22.6	null null
10/07/2025 21:00	7.1	11.8	11.5	9.8	11.2	10.6	10.6	null	9.3	22.2	27.0	15.8	29.8	23.5	19.0	null	11.1	23.3	26.9	19.2	29.0	25.1	22.3	null
10/07/2025 22:00	7.2	11.9	11.6	9.8	11.3	10.7	10.4	null	10.4	21.9	28.1	14.2	24.8	22.9	20.3	null	11.2	23.2	26.9	19.0	28.8	25.2	22.0	null
10/07/2025 23:00	7.3	11.9	11.6	9.7	11.2	10.8	10.2	null	10.6	19.6	23.1	15.2	23.8	21.6	22.1	null	11.2	22.8	26.6	18.6	28.4	25.2	21.7	null
10/08/2025 00:00 10/08/2025 01:00	7.3 7.3	11.9 12.0	11.6 11.6	9.3	11.2 11.3	10.9 10.9	10.2 10.3	null null	12.5 12.0	24.3	25.5 23.2	16.7 17.1	23.6	21.7	24.4 22.9	null	11.3 11.4	22.7 22.7	26.3 25.9	17.9 17.7	28.1	25.2 24.9	21.8	null null
10/08/2025 02:00	7.4	12.0	11.6	9.2	11.3	10.9	10.2	null	11.0	25.0	25.9	14.8	24.5	21.7	21.3	null	11.5	22.6	25.7	17.6	27.6	24.9	21.8	null
10/08/2025 03:00	7.4	12.1	11.6	9.2	11.4	11.0	10.2	null	10.4	25.4	24.5	15.8	25.9	21.4	21.3	null	11.4	22.6	25.5	17.4	27.5	24.9	21.7	null
10/08/2025 04:00 10/08/2025 05:00	7.4 7.4	12.1 12.2	11.7 11.7	9.3	11.5 11.5	11.0 11.0	10.3 10.3	null null	10.0 9.7	19.4 19.3	25.3 21.9	17.7 16.7	24.7 20.8	20.9 19.7	21.9 21.4	null null	11.3 11.4	22.6 22.6	25.4 25.1	17.3 17.2	27.2 26.9	24.6 24.5	21.6 21.5	null null
10/08/2025 06:00	7.5	12.3	11.8	9.4	11.6	11.0	10.3	null	9.6	22.3	25.2	20.1	23.9	20.3	20.6	null	11.4	22.7	25.1	17.3	26.8	24.5	21.3	null
10/08/2025 07:00	7.5	12.4	11.9	9.5	11.6	11.1	10.3	null	11.7	24.8	28.6	20.9	24.6	22.7	20.0	null	11.4	22.8	25.3	17.5	26.9	24.5	21.1	null
10/08/2025 08:00	7.5	12.5	11.9	9.5	11.6	11.1	10.4	null	12.1	25.4	25.5	15.7	23.4	21.0	20.1	null	11.5	23.1	25.4	17.5	27.0	24.6	21.0	null
10/08/2025 09:00 10/08/2025 10:00	7.5 7.5	12.5 12.6	11.9 12.0	9.5 9.5	11.7 11.7	11.1 11.7	10.4 10.5	null null	10.7 12.4	25.9 27.5	25.7 27.1	19.8 19.3	32.1 32.5	24.6 48.3	20.5 24.8	null null	11.5 11.5	23.3 23.5	25.7 26.0	17.7 17.7	27.3 27.4	24.6 25.6	20.7	null null
10/08/2025 11:00	7.5	12.6	12.1	9.6	11.7	11.7	10.6	null	14.3	25.4	31.7	19.1	39.0	27.8	21.7	null	11.6	23.6	26.5	17.8	27.7	25.7	20.8	null
10/08/2025 12:00	7.5	12.6	12.1	9.6	11.6	11.7	10.6	null	12.4	21.7	28.5	18.4	24.7	23.8	20.0	null	11.7	23.6	26.7	17.9	27.6	25.6	20.8	null
10/08/2025 13:00 10/08/2025 14:00	7.5 7.4	12.5 12.3	12.1 12.0	9.5 9.4	11.5 11.3	11.5 11.3	10.6 10.7	null null	11.9 11.5	20.0	30.2	16.2 17.9	26.5 28.3	22.5 26.0	20.0	null null	11.7 11.6	23.5	26.9 27.1	17.8 17.6	27.4 27.2	25.3 25.0	20.7	null null
10/08/2025 15:00	7.4	12.1	11.9	9.2	11.2	11.2	10.7	null	11.8	21.3	34.6	17.3	31.5	25.5	24.9	null	11.5	23.4	27.1	17.4	27.1	24.6	21.2	null
10/08/2025 16:00	7.2	11.9	11.8	9.0	11.1	11.0	11.2	null	12.4	23.7	39.0	16.7	38.0	27.2	27.5	null	11.4	22.8	27.5	17.0	27.2	24.2	21.6	null
10/08/2025 17:00	7.2 7.2	11.8 11.8	11.8 11.9	9.0	11.0 11.0	11.1 11.2	11.4 11.6	null	12.3 13.6	25.2 24.9	41.4 36.2	17.8 21.6	30.6 28.2	31.8 27.4	29.2 29.7	null null	11.3 11.4	22.9 23.1	28.1 28.5	17.0 17.2	27.3 27.3	24.5 24.7	21.8 22.2	null null
10/08/2025 18:00 10/08/2025 19:00	7.2	11.8	11.9	9.0	11.0	11.2	11.6	null null	13.6	23.4	29.1	21.6 17.7	26.2	24.9	28.8	null	11.4	23.1	28.5	17.3	27.3	24.7	22.2	null null
10/08/2025 20:00	7.4	12.0	12.0	9.2	11.1	11.1	12.1	null	11.3	22.5	24.5	17.8	25.9	26.0	28.0	null	11.6	23.2	28.6	17.5	27.4	24.8	22.9	null
10/08/2025 21:00	7.4	12.0	12.0	9.3	11.1	11.1	12.4	null	10.5	19.8	24.8	17.8	24.8	26.0	30.4	null	11.6	23.1	28.5	17.6	27.2	24.9	23.4	null
10/08/2025 22:00 10/08/2025 23:00	7.4 7.5	12.0 12.0	12.0 12.0	9.4	11.1	11.1 11.1	12.6 12.8	null null	10.7 11.0	19.7 17.6	27.6 24.3	18.1 17.2	26.6 27.4	23.4	31.7 31.6	null null	11.6 11.7	23.0 22.9	28.4	17.8 17.8	27.2 27.4	24.9 25.0	23.9 24.3	null null
10/09/2025 00:00	7.5	12.1	12.0	9.4	11.1	11.1	13.0	null	10.6	17.8	20.1	16.4	23.8	23.4	30.1	null	11.6	22.6	28.3	17.8	27.4	25.0	24.5	null
10/09/2025 01:00	7.6	12.1	12.0	9.5	11.2	11.2	12.9	null	11.6	18.8	21.5	17.1	24.1	22.9	23.4	null	11.6	22.4	28.2	17.8	27.4	25.1	24.6	null
10/09/2025 02:00	7.7	12.1	12.1	9.6	11.2	11.3	12.9	null	10.1	19.1	22.3	16.8	23.6	23.0	20.6	null	11.5	22.2	28.0	17.9	27.4	25.2	24.5	null
10/09/2025 03:00 10/09/2025 04:00	7.7 7.8	12.2 12.2	12.1 12.2	9.7 9.7	11.3 11.3	11.4 11.5	12.9 12.9	null null	11.3 10.4	20.0	23.2 26.8	17.1 16.9	23.8 24.7	25.8 24.0	21.7 23.5	null null	11.6 11.6	21.9 22.1	28.0 28.1	18.0 17.9	27.3 27.3	25.4 25.5	24.5 24.6	null null
10/09/2025 05:00	7.8	12.3	12.3	9.8	11.4	11.5	12.9	null	11.1	22.9	25.3	21.1	29.7	21.6	23.4	null	11.6	22.3	28.2	18.1	27.7	25.6	24.7	null
10/09/2025 06:00	7.9	12.3	12.3	9.9	11.5	11.6	12.9	null	12.9	21.6	28.1	25.1	28.5	21.1	23.9	null	11.8	22.2	28.3	18.3	27.9	25.6	24.8	null
10/09/2025 07:00 10/09/2025 08:00	8.0 8.1	12.4 12.5	12.4 12.6	9.9	11.6 11.8	11.7 11.9	12.8 12.8	null null	12.0 15.1	21.6 26.5	33.2 32.9	21.2	29.3 35.7	24.6 30.7	22.7 21.9	null null	11.8 11.9	22.1 22.1	28.5 28.8	18.3 18.7	28.1 28.6	25.7 26.1	24.9 25.0	null null
10/09/2025 08:00	8.3	12.5	12.6	10.1	12.1	12.1	12.8	null	16.6	31.2	37.4	23.8	38.3	34.4	20.9	null	12.2	22.1	28.8	19.0	28.8	26.1	25.0	null
10/09/2025 10:00	8.5	13.0	13.0	10.5	12.4	11.7	12.7	null	18.0	33.4	36.8	26.9	56.2	36.3	24.1	null	12.4	22.6	29.7	19.3	29.8	26.0	25.0	null
10/09/2025 11:00	8.7	13.2	13.2	10.7	12.6	11.8	12.6	null	20.2	34.1	38.5	28.4	39.1	34.8	19.8	null	12.6	23.0	30.0	19.7	29.8	26.3	24.9	null
10/09/2025 12:00 10/09/2025 13:00	8.9 9.0	13.4 13.7	13.4 13.6	10.9 11.1	12.9 13.2	12.0 12.2	12.5 12.5	null null	17.7 15.6	29.7 26.7	39.1 38.0	25.2 22.5	34.8 36.5	32.6 32.6	17.8 17.8	null null	12.9 13.0	23.3 23.6	30.4	20.0	30.2 30.7	26.7 27.1	24.8 24.7	null null
10/09/2025 14:00	9.2	13.9	13.8	11.3	13.5	12.5	12.4	null	16.1	25.2	41.5	23.4	36.7	35.2	18.7	null	13.2	23.7	31.1	20.5	31.0	27.5	24.7	null
10/09/2025 15:00	9.3	14.2	14.0	11.5	13.8	12.7	12.3	null	16.9	27.9	45.8	23.6	39.0	40.6	23.1	null	13.4	24.0	31.6	20.7	31.3	28.1	24.6	null
10/09/2025 16:00	9.5	14.4	14.2	11.6	13.9	12.9	12.2	null	19.5	29.0	47.6	22.9	38.4	37.5	26.3	null	13.7	24.2	31.9	21.0	31.3	28.5	24.5	null
10/09/2025 17:00 10/09/2025 18:00	9.6 9.6	14.5 14.5	14.2 14.2	11.8 11.7	14.1 14.1	12.9 12.8	12.2 12.2	null null	16.3 13.6	27.5 22.2	45.6 33.6	21.3 16.7	34.4 24.8	34.6 25.6	28.9 30.7	null null	13.9 13.9	24.3	32.1 32.0	21.1 20.9	31.5 31.3	28.6 28.6	24.5 24.6	null null
10/09/2025 19:00	9.6	14.4	14.2	11.7	14.1	12.8	12.2	null	12.8	20.2	26.9	15.8	23.4	23.1	29.9		13.8	24.1	31.9	20.8	31.2	28.5	24.6	null

Time	M03	M04	24-hou	Rolling Av	erage FSP (μg/m³) M13	M14	M15a	M03	M04	1-h M06	our Average	RSP (µg/r	m³) M13	M14	M15a	M03	M04	24-hour M06	Rolling Av	erage RSP ((μg/m³) M13	M14	M15a
10/09/2025 20:00	9.6	14.4	14.2	11.7	14.1	12.8	12.2	null	11.5	21.6	26.4	16.3	23.2	24.4	28.4	null	13.8	24.1	32.0	20.8	31.1	28.4	24.6	null
10/09/2025 21:00	9.6	14.4	14.2	11.6	14.2	12.8	12.2	null	12.2	21.0	27.4	16.6	25.8	24.3	29.9	null	13.9	24.1	32.1	20.7	31.2	28.3	24.6	null
10/09/2025 22:00 10/09/2025 23:00	9.7 9.6	14.5 14.5	14.2 14.2	11.6 11.6	14.2	12.9 12.9	12.2 12.2	null null	12.6 9.9	24.0	28.7 26.7	16.0 15.9	25.4 23.0	24.2	29.7 32.8	null	14.0 13.9	24.3	32.1 32.2	20.6	31.1	28.4 28.4	24.5	null null
10/10/2025 00:00	9.6	14.5	14.2	11.6	14.1	12.9	12.3	null	9.0	21.6	23.8	16.3	21.2	23.0	37.0	null	13.9	24.6	32.4	20.6	30.8	28.4	24.9	null
10/10/2025 01:00	9.5 9.4	14.4	14.2	11.6	14.1	12.9	12.4	null	8.2	20.8	21.8	16.8	22.0	20.7	29.9	null	13.7	24.7	32.4	20.6	30.7	28.3	25.1	null
10/10/2025 02:00 10/10/2025 03:00	9.4	14.4 14.3	14.2 14.1	11.5 11.5	14.0 14.0	12.8 12.8	12.5 12.5	null null	8.8 11.7	19.3 20.9	24.2 22.2	16.6 17.4	23.7 21.3	23.9 27.4	23.7 22.2	null null	13.7 13.7	24.7 24.8	32.5 32.4	20.6	30.7 30.6	28.3 28.4	25.3 25.3	null null
10/10/2025 04:00	9.3	14.2	14.1	11.5	13.9	12.7	12.4	null	10.2	20.4	24.0	16.8	20.2	21.7	25.2	null	13.7	24.7	32.3	20.6	30.4	28.3	25.4	null
10/10/2025 05:00	9.2	14.1	14.0	11.4	13.8	12.7	12.4	null	8.9	18.8	22.3	17.6	21.6	20.3	25.0	null	13.6	24.5	32.2	20.4	30.1	28.2	25.4	null
10/10/2025 06:00 10/10/2025 07:00	9.2 9.1	14.1 14.2	13.9 13.9	11.4 11.3	13.7 13.7	12.6 12.5	12.4 12.3	null null	9.0	19.7 24.0	25.9 34.0	20.0 22.6	23.8	20.7 24.6	26.2 25.0	null null	13.4 13.4	24.4	32.1 32.1	20.2	29.9 29.9	28.2 28.2	25.5 25.6	null null
10/10/2025 08:00	9.0	14.2	13.8	11.3	13.6	12.5	12.3	null	11.5	26.0	31.9	23.0	29.7	30.5	17.8	null	13.2	24.5	32.1	20.2	29.6	28.2	25.5	null
10/10/2025 09:00	8.9	14.1	13.7	11.2	13.5	12.4	12.2	null	15.6	28.7	38.6	23.1	35.6	35.2	18.3	null	13.2	24.4	32.1	20.1	29.5	28.2	25.3	null
10/10/2025 10:00 10/10/2025 11:00	8.9 8.8	14.1	13.6 13.6	11.1	13.3 13.3	12.3 12.3	12.1 12.1	null null	16.9 16.7	32.8 32.2	40.4 42.7	24.5 24.6	37.0 37.7	37.9 38.1	24.1 21.0	null null	13.1 13.0	24.4 24.3	32.3 32.5	20.0 19.8	28.7 28.7	28.3 28.4	25.3 25.4	null null
10/10/2025 12:00	8.8	14.1	13.6	11.0	13.3	12.3	12.0	null	16.0	28.1	42.2	22.9	38.7	36.9	21.2	null	12.9	24.2	32.6	19.7	28.8	28.6	25.5	null
10/10/2025 13:00	8.8	14.1	13.6	11.0	13.3	12.3	12.0	null	16.8	27.3	41.1	22.6	40.1	35.8	18.4	null	13.0	24.2	32.7	19.7	29.0	28.7	25.6	null
10/10/2025 14:00 10/10/2025 15:00	8.9 8.9	14.2 14.2	13.6 13.7	11.1 11.1	13.3 13.3	12.3 12.3	12.1 12.0	null null	16.9 18.0	28.0 30.5	38.8 46.7	25.2 25.3	40.8 41.6	36.3 37.2	22.9 22.6	null null	13.0 13.0	24.3	32.6 32.6	19.8 19.9	29.1 29.3	28.8 28.7	25.7 25.7	null null
10/10/2025 16:00	8.9	14.3	13.7	11.1	13.3	12.3	12.0	null	17.0	30.7	48.2	23.1	43.6	39.6	23.4	null	12.9	24.5	32.7	19.9	29.5	28.7	25.6	null
10/10/2025 17:00	8.9	14.3	13.8	11.1	13.4	12.3	12.0	null	15.7	28.0	49.0	22.7	37.4	45.6	27.4	null	12.9	24.5	32.8	19.9	29.6	29.2	25.5	null
10/10/2025 18:00 10/10/2025 19:00	8.9 8.9	14.4	14.0 14.1	11.3 11.3	13.7 13.8	12.5 12.5	11.9 11.6	null null	15.5 12.9	27.3 23.6	52.4 34.9	21.5 19.3	39.9	34.9 24.8	23.8 21.9	null	13.0 13.0	24.8	33.6 33.9	20.1	30.2 30.5	29.6 29.7	25.2 24.9	null null
10/10/2025 20:00	8.9	14.4	14.1	11.3	13.8	12.5	11.4	null	10.6	21.3	31.3	17.4	25.4	24.1	19.9	null	13.0	24.9	34.1	20.3	30.6	29.6	24.6	null
10/10/2025 21:00	8.8	14.4	14.0	11.3	13.7	12.4	11.1	null	9.0	19.2	28.0	13.8	19.7	25.9	20.1	null	12.8	24.8	34.2	20.2	30.3	29.7	24.1	null
10/10/2025 22:00 10/10/2025 23:00	8.7 8.6	14.3	13.9 13.8	11.2 11.1	13.5 13.4	12.4 12.3	10.9 10.6	null null	9.0 8.2	17.9 16.9	20.8	12.8 12.7	19.5 20.6	24.7 27.0	28.6 26.3	null null	12.7 12.6	24.6 24.3	33.8 33.6	20.1 19.9	30.1	29.7 29.9	24.1	null null
10/11/2025 00:00	8.6	14.0	13.7	11.0	13.3	12.2	10.4	null	6.8	16.9	18.4	14.2	18.4	21.4	30.7	null	12.5	24.1	33.4	19.9	29.9	29.8	23.6	null
10/11/2025 01:00	8.5	13.9	13.7	10.9	13.3	12.2	10.2	null	9.6	17.0	18.1	14.3	17.4	20.1	21.5	null	12.6	24.0	33.2	19.8	29.7	29.8	23.2	null
10/11/2025 02:00 10/11/2025 03:00	8.5 8.4	13.9 13.8	13.6 13.5	10.8	13.1	12.1 12.0	10.1 10.1	null null	7.6 7.5	17.7 17.2	17.2 21.3	12.7 14.1	16.7 26.3	19.4 33.5	19.9 18.6	null null	12.5 12.3	23.9 23.8	32.9 32.9	19.6 19.5	29.4 29.6	29.6 29.8	23.1	null null
10/11/2025 04:00	8.3	13.7	13.4	10.7	13.0	12.0	10.0	null	8.1	15.7	30.0	16.7	29.1	28.1	15.5	null	12.3	23.6	33.1	19.4	30.0	30.1	22.5	null
10/11/2025 05:00	8.3	13.6	13.4	10.7	13.0	11.9	9.9	null	8.0	15.8	46.6 35.7	19.2	50.9	26.2	16.1	null	12.2	23.4	34.2	19.5	31.2	30.4	22.1	null
10/11/2025 06:00 10/11/2025 07:00	8.2 8.2	13.4 13.2	13.4 13.3	10.6 10.5	12.9 12.8	11.9 11.9	9.9	null null	8.7 10.9	13.1 18.7	35.7 28.8	16.6 17.0	31.8 21.4	24.5 29.6	16.0 14.6	null	12.2 12.2	23.2 22.9	34.6 34.3	19.4 19.1	31.5 31.2	30.5 30.7	21.7 21.3	null null
10/11/2025 08:00	8.3	13.2	13.3	10.5	12.8	11.9	9.8	null	14.2	24.9	29.5	20.9	33.0	29.1	14.6	null	12.3	22.9	34.2	19.1	31.4	30.7	21.1	null
10/11/2025 09:00 10/11/2025 10:00	8.3 8.2	13.2 13.1	13.3 13.3	10.5 10.4	12.7 12.7	11.9 11.9	9.7 9.6	null null	14.6 13.9	32.9 29.9	33.5	25.2 23.1	33.6 34.2	30.5 34.1	13.0 18.5	null null	12.3 12.2	23.1	34.0 33.7	19.1 19.1	31.3 31.2	30.5 30.3	20.9	null null
10/11/2025 10:00	8.1	12.9	13.2	10.4	12.5	11.8	9.5	null	14.8	24.0	28.3	19.4	29.4	28.0	15.6	null	12.1	22.6	33.1	18.9	30.8	29.9	20.7	null
10/11/2025 12:00	8.0	12.7	12.9	10.1	12.3	11.6	9.4	null	12.0	21.1	26.0	16.1	24.7	25.9	15.6	null	11.9	22.3	32.5	18.6	30.2	29.4	20.2	null
10/11/2025 13:00	7.9	12.5	12.7	10.0	12.0	11.4	9.3	null null	12.0 12.3	20.8	27.1 32.0	16.9	26.4 26.3	23.4	17.2	null null	11.7	22.0 21.8	31.9	18.3	29.7 29.1	28.9	20.2 19.8	null null
10/11/2025 14:00 10/11/2025 15:00	7.7 7.5	12.2 12.0	12.4 12.2	9.7 9.5	11.6 11.3	11.2 11.0	9.1 8.9	null	11.6	21.6 21.8	35.4	17.1 17.3	27.4	32.8	12.7 11.2	null	11.5 11.3	21.4	31.6 31.1	18.0 17.7	28.5	28.4	19.3	null
10/11/2025 16:00	7.4	11.7	11.9	9.4	11.1	10.8	8.6	null	11.4	22.4	38.1	17.0	29.8	31.5	9.5	null	11.0	21.1	30.7	17.4	27.9	27.9	18.7	null
10/11/2025 17:00 10/11/2025 18:00	7.2 7.1	11.5 11.4	11.7 11.5	9.2	10.8 10.6	10.6 10.4	8.3	null null	10.0 10.6	20.5	37.1 39.0	15.4 16.1	33.5 26.8	38.0 23.2	19.0 14.6	null null	10.8 10.6	20.8	30.2 29.6	17.1 16.9	27.7 27.2	27.6 27.1	18.4 18.0	null null
10/11/2025 19:00	7.1	11.4	11.4	9.0	10.5	10.4	7.8	null	11.6	21.5	25.3	15.5	23.8	25.2	10.5	null	10.5	20.4	29.2	16.7	26.9	27.1	17.5	null
10/11/2025 20:00	7.1	11.2	11.3	8.9	10.4	10.4	7.6	null	10.1	16.9	20.9	13.9	20.7	22.1	12.0	null	10.5	20.2	28.8	16.6	26.7	27.0	17.2	null
10/11/2025 21:00 10/11/2025 22:00	7.0 7.0	11.1 11.1	11.2 11.2	8.9 8.9	10.4 10.3	10.3 10.3	7.5 7.3	null null	8.7 8.2	15.6 13.3	18.9 18.5	13.0 13.1	18.2 17.5	18.6 18.6	11.4 18.3	null null	10.5 10.5	20.0 19.9	28.4 28.3	16.6 16.6	26.7 26.6	26.7 26.5	16.8 16.4	null null
10/11/2025 22:00	7.0	11.0	11.2	8.9	10.3	10.3	7.2	null	7.5	11.7	19.7	13.1	16.0	17.5	17.6	null	10.4	19.6	28.3	16.6	26.4	26.1	16.0	null
10/12/2025 00:00	7.0	11.0	11.1	8.8	10.2	10.2	7.3	null	6.6	12.4	16.6	12.4	15.6	16.1	25.9	null	10.4	19.4	28.2	16.5	26.3	25.8	15.8	null
10/12/2025 01:00 10/12/2025 02:00	7.0 7.0	10.9 10.9	11.1 11.1	8.8	10.2 10.1	10.2 10.1	7.2 7.0	null null	6.9 5.6	12.5 13.8	15.2 15.4	12.8 10.3	15.5 14.0	15.5 14.9	17.3 14.3	null null	10.3 10.2	19.3 19.1	28.1	16.4 16.3	26.2 26.1	25.7 25.5	15.6 15.4	null null
10/12/2025 03:00	7.0	10.8	11.0	8.7	10.0	10.0	6.9	null	5.4	15.4	14.1	10.2	10.7	17.3	17.5	null	10.2	19.0	27.7	16.2	25.4	24.8	15.4	null
10/12/2025 04:00	6.9	10.7	10.8	8.7	9.9	10.0	6.8	null	7.1	14.5	13.9	14.6	14.2	17.4	17.5	null	10.1	19.0	27.0	16.1	24.8	24.3	15.4	null
10/12/2025 05:00 10/12/2025 06:00	6.9 6.8	10.7 10.6	10.7 10.5	8.5 8.4	9.7 9.6	9.8 9.7	6.7 6.7	null null	5.3 4.8	15.3 14.5	11.1 11.4	10.5 9.6	14.1 13.4	15.0 18.4	21.9 22.0	null null	10.0 9.8	19.0 19.0	25.6 24.5	15.7 15.4	23.3	23.9 23.6	15.7 15.9	null null
10/12/2025 07:00	6.7	10.5	10.3	8.2	9.5	9.6	6.6	null	5.9	11.8	13.4	9.8	14.2	15.5	19.1	null	9.6	18.7	23.9	15.1	22.2	23.0	16.1	null
10/12/2025 08:00	6.5	10.2	10.1	8.0	9.2	9.4	6.6	null	6.3	10.9	13.0	10.9	12.6	14.0	19.4	null	9.3	18.1	23.2	14.7	21.4	22.4	16.3	null
10/12/2025 09:00 10/12/2025 10:00	6.3	9.8 9.4	9.8 9.6	7.8 7.5	8.9 8.5	9.1 8.8	6.5	null null	5.7 8.4	9.5 19.4	11.6 25.1	10.3 10.6	12.1 16.8	11.6 18.0	20.6 20.6	null	8.9 8.7	17.2 16.7	22.3 22.0	14.1 13.6	20.5 19.7	21.6 20.9	16.6 16.7	null null
10/12/2025 11:00	5.9	9.1	9.5	7.3	8.2	8.6	6.5	null	6.2	13.6	25.2	10.5	15.6	18.9	19.6	null	8.3	16.3	21.8	13.2	19.2	20.6	16.9	null
10/12/2025 12:00	5.7	8.9	9.3	7.1	8.0	8.4	6.5	null	5.8	10.9	13.4	9.2	12.3	12.8	20.4	null	8.1	15.9	21.3	12.9	18.6	20.0	17.1	null
10/12/2025 13:00 10/12/2025 14:00	5.6 5.4	8.6 8.4	9.1 8.8	6.9	7.8 7.6	8.4 8.3	6.5	null null	6.2	13.1 10.7	15.2 13.8	9.5 9.4	13.1 11.4	18.7 14.1	18.3 10.9	null null	7.8 7.6	15.5 15.1	20.8	12.6 12.3	18.1 17.5	19.8 19.4	17.1 17.1	null null
10/12/2025 15:00	5.3	8.2	8.6	6.6	7.4	8.2	6.4	null	6.5	13.7	16.6	9.8	13.0	19.7	13.0	null	7.4	14.8	19.3	12.0	16.9	18.9	17.1	null
10/12/2025 16:00 10/12/2025 17:00	5.2	8.0 7.9	8.5 8.3	6.4	7.2 7.0	8.1 8.2	6.4	null null	6.4	18.0 16.0	22.0 30.4	10.4 9.9	15.2 14.0	19.8 27.8	17.8 15.0	null null	7.2 7.0	14.6 14.4	18.6 18.3	11.7 11.5	16.3 15.5	18.4 18.0	17.5 17.3	null null
10/12/2025 17:00	5.1 4.9	7.9	8.1	6.1	6.6	8.1	6.4	null	6.8	18.3	19.4	10.0	13.3	19.0	10.9	null	6.9	14.4	17.5	11.5	14.9	17.8	17.3	null
10/12/2025 19:00	4.8	7.6	8.0	6.0	6.4	8.0	6.4	null	6.6	15.9	18.4	9.9	13.2	14.9	10.7	null	6.7	14.1	17.2	11.0	14.4	17.3	17.2	null
10/12/2025 20:00 10/12/2025 21:00	4.7 4.6	7.4 7.3	7.9 7.7	5.9 5.7	6.3	7.9 7.8	6.3 6.3	null null	6.3 5.9	13.4 13.0	18.1 18.1	9.7 8.5	13.0 12.3	18.9 17.5	9.1 11.6	null null	6.5 6.4	13.9 13.8	17.1 17.1	10.8 10.6	14.1 13.9	17.2 17.2	17.0 17.1	null null
10/12/2025 21:00	4.5	7.3	7.7	5.6	6.0	7.6	6.2	null	5.6	14.5	17.9	10.3	21.7	19.0	14.3	null	6.3	13.9	17.1	10.5	14.1	17.2	16.9	null
10/12/2025 23:00	4.4	7.1	7.5	5.5	6.0	7.6	6.1	null	6.0	19.1	19.5	10.9	22.0	20.4	15.9		6.2	14.2	17.0	10.4	14.3	17.3	16.8	null
10/13/2025 00:00 10/13/2025 01:00	4.4	7.1 7.1	7.4 7.4	5.5 5.4	5.9 5.9	7.5 7.5	5.8 5.8	null null	7.1 6.8	22.0 20.8	17.0 18.1	11.8 11.6	21.0 20.8	17.7 16.2	18.7 19.9	null null	6.2	14.6 14.9	17.1 17.2	10.4 10.3	14.5 14.8	17.4 17.4	16.5 16.6	null null
10/13/2025 02:00	4.3	7.1	7.4	5.4	5.9	7.4	5.9	null	6.0	22.6	20.8	10.7	26.0	18.6	19.4	null	6.2	15.3	17.4	10.4	15.3	17.6	16.8	null
10/13/2025 03:00	4.3	7.2	7.3	5.4	5.9	7.4	5.9	null	6.7	22.9	22.5	12.7	21.9	18.8	18.2		6.3	15.6	17.7	10.5	15.7	17.6	16.9	null
10/13/2025 04:00 10/13/2025 05:00	4.3 4.3	7.2 7.2	7.3 7.2	5.2 5.2	5.9 5.9	7.3 7.3	6.0	null null	6.8 7.2	21.4	13.7 13.5	9.1 9.4	18.3 22.6	17.7 18.1	23.1 21.6	null null	6.3	15.9 16.1	17.7 17.8	10.2 10.2	15.9 16.2	17.6 17.8	17.1 17.1	null null
10/13/2025 06:00	4.3	7.2	7.2	5.2	5.9	7.3	6.0	null	5.3	9.4	11.1	9.1	20.2	13.6	25.2	null	6.4	15.9	17.8	10.2	16.5	17.6	17.2	null
10/13/2025 07:00	4.3	7.1	7.2	5.2	5.8	7.2	6.1	null	5.6	8.1	15.8	9.9	14.5	10.0	22.5	null	6.4	15.7	17.9	10.2	16.5	17.3	17.4	null
10/13/2025 08:00 10/13/2025 09:00	4.3	7.2 7.2	7.2 7.3	5.2 5.2	5.8 5.9	7.1 7.1	6.1	null null	8.0 7.2	17.2 16.9	19.2 17.4	12.6 13.3	14.5 20.4	14.7 15.9	21.7 22.0	null null	6.4	16.0 16.3	18.2 18.4	10.2 10.4	16.6 17.0	17.4 17.5	17.5 17.5	null null
10/13/2025 10:00	4.3	7.2	7.2	5.3	5.9	7.1	6.2	null	6.4	16.0	12.0	11.8	21.1	17.3	21.9	null	6.4	16.2	17.9	10.4	17.1	17.5	17.6	null
10/13/2025 11:00	4.3	7.2	7.1	5.3	5.9	7.1	6.2	null	6.7	13.2 10.5	17.0 20.4	10.4	13.1	11.9	20.0	null	6.4	16.2	17.5	10.4	17.0	17.2	17.6 17.5	null
10/13/2025 12:00 10/13/2025 13:00	4.3 4.3	7.2 7.1	7.1 7.1	5.3 5.3	5.9 5.8	7.1 6.8	6.1	null null	6.2	10.5	14.0	9.3	11.0 11.7	11.8 9.1	17.4 17.2	null null	6.5 6.5	16.1 16.0	17.8 17.8	10.4 10.4	17.0 16.9	17.2 16.8	17.5 17.4	null null
10/13/2025 14:00	4.3	7.1	7.2	5.3	5.8	6.8	6.2	null	5.9	11.2	23.5	9.2	13.5	13.0	15.6	null	6.5	16.0	18.2	10.4	17.0	16.7	17.6	null
10/13/2025 15:00	4.3	7.1	7.2	5.3	5.9	6.6	6.2	null	7.2	14.3	24.8	9.7	48.2	14.6	13.4	null	6.5	16.1	18.5	10.4	18.5	16.5	17.6	null
10/13/2025 16:00 10/13/2025 17:00	4.3 4.3	7.0 6.9	7.2 7.1	5.2 5.2	5.9 5.9	6.5 6.3	6.2 6.2	null null	6.6	11.7 14.6	28.7 29.4	10.3 10.2	22.4 15.7	17.5 20.3	15.5 17.4	null null	6.5 6.5	15.8 15.7	18.8 18.8	10.4 10.4	18.8 18.9	16.4 16.1	17.5 17.6	null null
10/13/2025 18:00	4.3	6.9	7.1	5.2	5.9	6.3	6.2	null	8.2	19.6	21.1	10.7	19.6	19.2	14.8	null	6.6	15.8	18.8	10.5	19.1	16.1	17.8	null
10/13/2025 19:00	4.3	7.2	7.1	5.3	6.0	6.3	6.3	null	8.2	25.9	21.8	12.5	17.0	17.7	14.6	null	6.6	16.2	19.0	10.6	19.3	16.2	18.0	null
10/13/2025 20:00 10/13/2025 21:00	4.3 4.4	7.4 7.5	7.1 7.2	5.4 5.4	6.0	6.3 6.3	6.3 6.3	null null	6.6	17.7 18.0	16.2 24.3	14.2 12.8	21.0 20.7	18.8 21.1	12.4 15.7	null null	6.6 6.7	16.4 16.6	18.9 19.2	10.8 10.9	19.6 20.0	16.2 16.4	18.1 18.3	null null
10/13/2025 22:00	4.4	7.5	7.3	5.5	6.1	6.3	6.4	null	6.2	20.0	25.0	11.4	24.5	18.1	15.5	null	6.7	16.8	19.5	11.0	20.1	16.3	18.3	null
10/13/2025 23:00	4.4	7.6	7.3	5.5	6.1	6.3	6.5	null	7.7	24.8	26.7	12.0	26.3	19.4	21.2		6.8	17.1	19.8	11.0	20.3	16.3	18.5	null
10/14/2025 00:00 10/14/2025 01:00	4.4	7.7 7.7	7.4 7.4	5.5 5.5	6.1	6.3 6.3	6.5 6.5	null null	8.1 6.5	22.6 23.1	21.1 16.2	10.9 10.7	26.1 25.3	18.4 15.8	16.6 17.3	null null	6.8	17.1 17.2	19.9 19.8	11.0 11.0	20.5	16.3 16.3	18.5 18.3	null null
10/14/2025 02:00	4.5	7.8	7.4	5.5	6.2	6.3	6.4	null	8.2	28.3	26.5	13.4	28.0	16.1	17.4	null	6.9	17.4	20.1	11.1	20.7	16.2	18.3	null
10/14/2025 03:00	4.5	7.9	7.5	5.6	6.3	6.3	6.4	null	8.8	27.3	28.3	15.9	34.9	20.0	21.6	null	7.0	17.6	20.3	11.2	21.3	16.3	18.4	null
10/14/2025 04:00 10/14/2025 05:00	4.5 4.5	7.9 7.9	7.6 7.6	5.6 5.6	6.3	6.4 6.3	6.5 6.5	null null	7.4 8.1	21.1 24.5	21.3 16.4	9.5 12.4	16.9 18.8	21.1 13.0	23.3 22.4	null null	7.0 7.0	17.6 17.8	20.6	11.2 11.3	21.2 21.1	16.4 16.2	18.4 18.4	null null
. ,																								

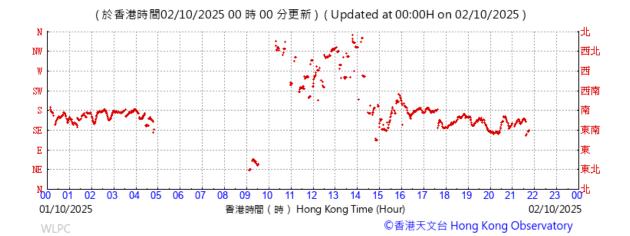

Section Column	Time	M03	M04	24-hou M06	r Rolling Av	erage FSP (μg/m³) M13	M14	M15a	M03	M04	1-h M06	our Average	RSP (µg/ı	n³) M13	M14	M15a	M03	M04	24-hour M06	Rolling Av	erage RSP (μg/m³) M13	M14	M15a
March Marc	10/14/2025 06:00																								
March Marc					-	-				-	_														
Section																									
Second column																									
Control																									
March Marc																									
March Marc																									
Section of the content of the cont																									
Section 1969 1969		-																							
Section of the column																									
Section of the content of the cont																									
Section		-			-																				
Control																									
Section	10/14/2025 23:00	4.5		8.1	5.4	6.3	6.6	7.4	null	11.7		27.8	16.8	25.3		12.6	null	7.5	18.2	23.8	11.2	20.0	18.2	21.2	null
Section																									
1988 1989																									
Marchister Mar																									
March Marc	10/15/2025 04:00	4.6	7.8	8.5	5.7	6.6	6.8	7.9	null	11.3	19.4	32.7	18.4	23.4	31.9	22.0	null	7.8	17.9	25.1	12.1	19.6	19.3	21.8	null
Section Control Section Sectio																									
Section		-																							
1967-1967-1967-1967-1967-1967-1967-1967-		-																							
Second column Second colum	10/15/2025 10:00	5.1	8.3	8.9	6.3	7.3	7.4	9.0	null	7.5	17.6	20.0	14.2	27.7	18.1	23.9	null	8.7	18.4	25.8	13.3	20.9	23.8	21.7	null
Section Sect																									
Section Sect																									
March Marc																									
Description Column Colum																									
Part																									
Decidency Column			9.6	9.7						10.9	17.5	24.3		23.6					20.3			26.1	24.9		
1		-																							
14 15 15 15 16 16 16 16 16																									
Temporal Section C																									
1999/0000 189 1999 1899	10/16/2025 03:00	6.6	10.4		7.9	11.6	9.3	11.4	null	12.0		23.7	16.9	23.7		23.9	null	10.5			14.8	26.1	25.4	22.8	null
14 15 15 15 15 15 15 15					-																				
14 15 15 15 15 15 15 15																									
1999/00000 72 112 115 84 125 85 114 861 187												-													
1999/2003 1909 74 115 117 87 127 139 113 mill 117 22 32 22 22 134 332 307 22 mill 110 23 23 23 mill 130 23 23 23 mill 130 23 23 23 mill 130 23 23 mill 130 23 23 23 mill 130 23 23 23 mill 23 23 23 23 23 23 23				11.3	8.4			11.4		18.7		29.3		33.7	30.1	21.9	null		19.9		15.0				null
Description Table																		-		-					
1999-00000 1999 120 12																									
Tell Properties Tell Prope																									
Part																									
1996/00079-1800 3-8 12-9 12-0 8-8 12-2 11-4 11-5	10/16/2025 14:00	8.0	12.6	12.5	9.4	13.5	11.1	11.5	null	16.5	29.1	37.8	23.2	32.8	30.1	23.4	null	12.3	22.6	29.5	16.8	29.2	25.4	23.9	null
1019 1019																									
1916/000291800 8.6 13.2 13.1 10.0 12.4 11.7 11.9 muls 15.1 20.7 45.0 13.0 30.2 24.5 7.5 muls 13.0 20.7 22.5 13.5 23.2 23.5 25.5 24.5 muls 13.0 20.5 25.5																									
1996/2002-2000 8.5 13.3 13.2 13.3 13.2 13.3 13.5 12.3 11.7 12.4 mul 12.9 22.5 33.8 23.5 24.5 26.9 24.5 26.9																									
	10/16/2025 19:00	8.5	13.2	13.2	10.1	12.3	11.7	12.1	null	12.5	28.2	35.9	22.3	23.9	30.0	28.5	null	13.0	23.9	32.2	18.5	28.3	26.7	24.5	null
The color of the																									
Description																									
Description Process																									
1017/2025 6900 9 9.1 13.8 13.3 11.0 12.5 11.7 13.8 1.0 11.1 12.5 11.7 13.8 1.0 11.1 12.5 11.1																									
10177202569000																									
10117/20258000 94 142 136 114 126 118 138 mul 154 228 324 249 319 23 213 mul 143 274 355 227 331 320 222 18 mul 143 274 355 227 331 328 283 281 10117/20258000 95 145 137 118 132 120 138 mul 152 357 357 353 323 628 342 218 mul 145 277 356 221 331 342 281 259 mul 10117/20258000 95 145 137 118 132 120 138 mul 152 357 357 357 353 323 628 342 218 mul 145 277 356 221 331 342 281 259 mul 10117/2025100 96 147 139 121 138 122 138 mul 144 286 355 341 857 349 221 mul 145 278 358 235 349 283 285 349 180 10117/20251200 97 149 141 123 140 124 138 mul 144 286 355 341 857 349 221 mul 145 277 358 235 349 283 285 349 381 10117/20251300 98 147 119 145 124 142 125 137 mul 130 233 91 221 348 323 217 mul 145 277 358 239 363 285 285 349 10117/20251300 98 149 144 125 143 126 138 mul 140 281 348 323 217 mul 145 277 359 240 364 285 285 mul 10117/20251500 98 150 145 126 145 127 149 mul 140 281 488 231 329 mul 140 273 389 240 364 287 284 mul 10117/20251500 98 150 145 126 145 127 139 mul 140 281 488 231 279 mul 144 273 365 240 365 288 285 380 mul 10117/20251500 98 151 146 127 149 140 129 140 mul 140 281 488 231 351 279 mul 144 273 365 240 365 288 285 380 mul 10117/20251500 99 151 146 127 149 140 141 mul 138 259 411 375 365 240 365 240 365 288 285 340 240 340 240 240 240 240 240 240 240 240 240 2																									
1017/20258000 9 9 146 138 136 116 128 119 138 null 157 31.2 221 23.3 379 320 222 null 14.3 274 35.5 227 33.1 280 259 null 1017/20251000 9 9 146 138 120 1314 121 1318 null 17.6 32.6 37.5 28.6 48.2 35.2 23.5 null 14.5 277 38.8 23.6 34.9 28.3 25.9 null 1017/20251000 9 9 149 14.1 12.3 14.0 12.1 13.8 null 17.6 32.6 37.5 28.6 48.2 35.2 23.5 null 14.5 27.7 38.8 23.6 38.9 28.4 28.0 null 1017/20251000 9.7 14.9 14.1 12.3 14.0 12.4 13.8 null 18.0 23.9 37.0 14.9 14.1 12.3 14.0 12.4 13.8 null 18.0 23.9 38.0 24.1 87.0 14.1 14.5 27.7 38.8 23.6 38.9 28.4 25.9 null 1017/20251000 9.7 14.9 14.1 12.3 14.0 12.4 13.8 null 18.0 23.9 37.0 null 18.0 23.9 38.0 32.5 24.1 88.7 14.1 14.5 27.7 38.8 23.0 38.9 28.4 25.9 null 1917/20251000 9.8 14.9 14.1 12.3 14.0 12.5 13.3 null 18.0 23.9 39.0 null 18.0 23.9 38.3 28.5 25.9 null 1917/20251000 9.8 14.9 14.4 12.5 14.3 12.6 13.8 null 18.0 23.9 39.0 null 18.0 23.9 38.3 28.5 25.9 null 1917/20251000 9.8 14.9 14.4 12.5 14.3 12.6 14.5 12.7 13.9 null 18.0 23.9 39.0 null 18.0 23.9 38.0 32.5 12.1 38.0 null 1917/20251000 9.9 15.1 14.6 12.6 14.5 12.7 13.9 null 18.0 25.1 39.0 null 14.0 26.1 44.8 23.5 36.0 31.3 26.7 null 14.5 27.7 36.5 24.0 38.8 29.0 25.7 null 1917/20251000 9.9 15.2 14.8 12.8 15.9 14.2 14.1 null 18.2 25.8 14.5 14.2 14.0 null 18.2 25.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 1																									
10177/20250000 9.5 14.5 13.7 11.8 13.2 12.0 13.8 mult 13.2 35.7 35.7 35.8 32.3 62.8 34.2 21.8 mult 14.5 27.6 35.8 23.1 34.2 22.1 25.9 mult 10177/202511000 9.6 14.7 13.9 12.1 13.8 mult 12.6 13.8 mult 14.6 26.6 35.5 24.1 58.7 33.6 22.4 mult 14.5 27.7 35.8 23.6 38.8 23																									
10177/20251000 9.6 14.6 13.8 12.0 13.4 12.1 13.8 mult 17.6 32.6 37.5 28.6 48.2 37.5 28.6 48.2 37.5 28.6 48.2 37.5 28.6 48.2 37.5 28.6 48.2 37.5 28.6 48.2 37.5 28.6 48.2 37.5 28.6 38.6 23.5 38.6 23.5 38.9 23.5 38.9 23.5 38.9 23.5 38.9 23.5 38.9 23.5 38.9 23.5 38.9 23.5 38.9 38.0 23.5 38.9 23.5 38.9 38.0 23.5 38.0 23.5 23.5 38.0 23.5 23.5 38.0 23.5																									
1017720251700 96 147 139 121 138 122 138 mult 144 266 35.5 24.1 58.7 33.6 22.4 mult 14.5 27.7 35.8 23.6 35.9 28.4 26.0 mult 1017720251700 97 149 14.3 12.4 14.2 12.5 13.7 mult 13.0 23.9 33.1 22.1 34.8 32.3 21.7 mult 14.5 27.7 35.8 23.0 36.3 23.5 25.5 mult 1017720251700 98 15.1 14.6 12.6 14.5 12.7 13.9 mult 14.0 26.1 48.8 23.1 38.1 35.1 27.9 mult 14.4 27.3 36.5 24.0 36.8 28.2 25.5 mult 1017720251700 10.0 15.2 14.8 12.8 14.1 mult 17.4 24.5 48.8 23.1 38.1 35.1 27.9 mult 14.4 27.3 36.5 24.0 36.8 28.2 25.5 mult 1017720251700 10.0 15.2 14.8 12.8 14.2 14.1 mult 17.4 24.5 48.6 23.4 45.0 38.7 34.8 mult 14.6 27.4 36.7 24.2 38.5 31.5 25.5 mult 1017720251700 10.0 15.2 14.8 12.8 14.2 14.1 mult 17.8 24.5 48.6 23.4 45.0 38.7 34.8 mult 14.6 27.4 36.7 24.2 38.5 31.5 25.5 mult 1017720251800 10.1 15.4 15.0 13.3 15.5 14.7 14.4 mult 17.8 28.8 40.6 26.4 43.2 37.9 38.6 mult 14.8 27.5 36.5 24.5 39.0 32.1 27.0 mult 1017720251900 10.3 15.5 15.1 13.1 15.5 14.7 14.4 mult 16.3 24.2 27.9 28.8 27.5 28.5 27.5 mult 1017720252000 10.4 15.5 15.1 13.1 15.5 14.7 14.4 mult 16.3 24.0 27.9 18.5 32.1 31.4 38.9 mult 14.8 27.5 36.5 24.4 39.8 32.3 27.4 mult 1017720252000 10.4 15.4 15.4 15.4 15.4 14.5 14																									
10177202515400 9.8 14.9 14.4 14.5 14.8 14.2 14.5 13.7 null 13.0 23.9 39.1 22.1 34.8 32.3 21.7 null 14.5 27.7 39.9 24.0 36.4 28.7 25.8 null 1017720251500 9.8 15.0 14.5 12.6 14.5 12.7 13.9 null 14.0 24.2 14.8 23.1 38.1 35.1 27.9 null 14.4 27.3 36.5 24.0 36.8 28.0 25.7 null 1017720251500 9.8 15.1 14.6 12.7 14.9 12.9 14.0 null 13.8 28.9 41.1 22.0 57.8 36.5 34.8 null 14.6 27.4 36.9 24.1 37.5 29.5 26.1 null 1017720251500 0.1 15.2 14.8 12.8 14.5 14.2 null 13.8 28.9 41.1 22.0 57.8 76.6 39.7 null 14.6 27.4 36.9 24.1 37.5 29.5 26.1 null 1017720251500 10.1 15.4 15.0 13.0 16.5 14.5 14.2 null 13.8 24.0 25.9 41.1 22.0 57.8 76.6 39.7 null 14.8 27.5 36.5 24.5 39.0 32.1 27.0 null 1017720251000 10.3 15.5 15.1 13.1 16.5 14.7 14.4 null 16.3 24.0 27.9 14.5 32.0 38.8 38.6 null 14.8 27.5 36.5 24.5 39.0 32.1 27.0 null 1017720252000 10.4 15.5 15.1 13.0 16.6 14.9 14.5 null 16.3 24.0 27.9 18.5 32.1 31.4 38.9 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 1017720252000 10.4 15.5 15.2 13.0 16.7 15.0 14.6 null 10.4 21.0 28.4 28.8 17.4 27.9 28.1 36.4 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 1017720252000 9.1 15.4 15.2 13.0 16.7 15.0 14.6 null 10.4 21.0 28.4 28.8 17.5 27.4 32.6 null 14.8 26.5 35.7 23.7 40.3 32.6 28.8 null 1018720252000 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 10.4 21.0 28.4 28.8 17.5 23.4 24.8 31.9 null 14.8 26.5 35.5 23.5 40.2 32.5 28.9 null 1018720250000 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 17.7 28.8 28.8 34.1 29.1 28.8 34.1 34.1 28.8 34.1 34.1 28.8 34.1 34.1 28.8 34.1 34.1	10/17/2025 11:00		14.7	13.9	12.1	13.8	12.2	13.8	null	14.4	26.6	35.5	24.1	58.7	33.6	22.4	null		27.7	35.8	23.6	35.9	28.4	26.0	null
10117/202515:00 9.8 14.9 14.4 12.5 14.3 12.6 13.8 null 16.0 24.2 44.8 23.5 36.0 31.3 26.7 null 14.5 27.5 36.2 24.0 36.5 28.8 25.5 null 10117/202515:00 9.8 15.1 14.6 12.7 14.9 12.9 14.0 null 17.4 24.5 48.8 23.1 38.1 35.1 27.9 null 14.6 27.4 36.9 24.1 37.5 25.5 25.5 null 10117/202515:00 10.0 15.2 14.8 12.8 15.9 14.2 14.1 null 13.8 25.9 41.1 20.0 57.8 76.6 39.7 null 14.6 27.4 36.7 24.2 38.5 31.5 25.5 25.1 null 10117/202515:00 10.1 15.4 15.0 13.0 16.3 14.5 14.2 null 17.8 28.8 40.6 26.4 43.2 37.9 36.6 null 14.8 27.5 36.5 24.4 39.8 32.1 27.0 null 10117/202515:00 10.4 15.5 15.1 13.1 16.5 14.7 14.4 null 16.3 24.2 35.9 20.2 42.9 35.8 36.6 null 14.9 27.4 36.5 24.4 39.8 32.2 27.4 null 10117/202515:00 10.4 15.5 15.1 13.0 16.6 14.9 14.5 null 16.3 24.2 27.9 18.5 32.1 31.4 38.9 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 10117/2025200 10.4 15.4 15.2 13.0 16.7 15.0 14.6 null 12.5 23.4 28.8 17.4 27.9 28.1 36.4 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 10117/2025200 10.2 15.4 15.2 15.0 16.8 15.0 14.8 null 10.4 21.0 26.4 16.1 27.4 24.7 32.6 null 14.8 26.5 35.7 23.7 40.3 32.6 27.9 null 10117/2025200 9.7 15.3 15.2 12.9 16.8 15.0 15.0 null 10.4 21.0 26.4 16.1 27.4 24.7 32.6 null 14.4 26.5 35.7 23.7 40.3 32.6 22.9 null 10117/20252000 9.7 15.3 15.2 12.1 16.8 15.0 15.0 null 10.4 21.0 26.4 15.9 23.4 23.8 33.4 11.9 14.2 26.0 35.4 23.5 40.2 23.5 40.2 23.5 40.2 23.5 23.8 null 10118/20250000 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 10.4 21.0 26.4 15.9 23.4 23.8 33.5 33.5 33.5 33.5 33.5 33.5 33.5																									
1017/20251500 98 15.0 14.5 12.6 14.5 12.7 13.9 null 14.0 26.1 48.8 23.1 38.1 35.1 27.9 null 14.6 27.4 38.9 24.1 38.5 24.0 38.8 29.0 25.7 null 1017/20251700 10.0 15.2 14.8 12.8 15.9 14.2 14.1 null 13.8 25.9 41.1 22.0 57.8 76.6 39.7 null 14.6 27.4 36.9 24.1 38.5 31.5 26.5 null 1017/20251800 10.1 15.4 15.0 13.0 15.3 14.5 14.2 null 17.8 28.8 40.8 24.4 43.7 38.6 null 14.8 27.5 36.5 24.5 39.0 32.1 27.0 null 1017/20251900 10.3 15.5 15.1 13.1 16.5 14.7 14.4 null 16.3 24.2 35.9 32.0 32.1 37.0 38.6 null 14.8 27.5 36.5 24.4 39.8 32.3 27.4 null 1017/20252000 10.4 15.5 15.1 13.0 16.6 14.9 14.5 null 16.3 24.0 27.9 18.5 32.1 31.4 38.9 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 1017/20252000 10.4 15.4 15.2 13.0 16.8 15.0 14.6 null 10.4 21.0 26.4 16.1 27.4 32.5 30.4 null 14.8 26.5 36.7 23.7 40.3 32.6 28.6 null 1017/20252000 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 10.2 21.2 22.8 28.8 13.4 23.4 23.8 33.4 11.9 14.2 26.0 35.4 23.2 40.1 32.5 28.9 null 1018/20250000 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 12.7 22.8 28.8 18.4 28.6 23.4 28.8 23.4 23.8 23.4 23.8 33.4 11.9 14.2 26.0 35.4 23.2 40.1 32.5 28.9 null 1018/20250000 9.7 15.3 15.2 12.7 16.8 15.0 15.0 null 10.2 12.1 22.8 28.8 18.4 28.6 23.4 28.8 23.4 23.8 23.4 2																									
1017/20251500 99 15.1 14.6 12.7 14.9 12.9 14.0 null 17.4 24.5 48.6 23.4 45.0 38.7 34.8 null 14.6 27.4 36.9 24.1 37.5 29.5 26.1 null 1017/20251500 10.1 15.4 15.0 13.0 16.3 14.5 14.2 null 17.8 28.8 40.6 26.4 43.2 37.9 38.6 null 14.8 27.5 36.5 24.5 38.9 32.1 27.0 null 1017/20251500 10.1 15.4 15.0 13.0 16.5 14.7 14.4 null 16.3 24.2 35.9 20.2 42.9 35.8 39.6 null 14.8 27.5 36.5 24.4 38.8 32.3 27.4 null 1017/202525000 10.1 15.4 15.2 13.0 16.6 14.9 14.5 null 16.3 24.2 35.9 20.2 42.9 35.8 39.6 null 14.8 27.5 36.5 24.4 38.8 32.3 27.4 null 1017/202525000 10.1 15.4 15.2 13.0 16.6 14.9 14.5 null 16.3 24.2 35.9 20.2 42.9 35.8 39.6 null 14.9 27.4 36.5 24.4 38.8 32.3 27.4 null 1017/202525000 10.2 15.4 15.2 13.0 16.6 14.9 14.5 null 12.5 23.4 28.8 17.4 27.9 28.1 36.4 null 15.1 26.8 36.0 23.9 40.2 32.7 28.4 null 1017/202525000 10.2 15.4 15.2 12.9 16.8 15.0 14.6 null 10.4 21.0 26.4 16.1 27.4 36.4 null 14.8 26.5 35.7 23.7 40.3 32.6 22.8 28.8 null 1018/20250000 9.9 15.4 15.2 12.8 16.8 15.0 15.0 null 10.4 21.0 26.4 16.1 27.4 24.7 36.6 null 14.8 26.5 35.7 23.7 40.3 32.6 28.9 null 1018/20250000 9.9 15.4 15.2 12.8 16.8 15.0 15.0 null 10.4 21.0 22.0 24.2 34.8 33.4 11.9 14.2 26.0 35.4 23.2 40.1 32.5 28.9 null 1018/20250000 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.1 25.5 35.6 23.5 23.5 32.6 29.1 null 1018/20250000 9.5 14.9 15.2 12.5 16.8 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 25.3 12.2 13.9 25.0 35.5 22.3 35.5 22.3 35.5 22.2 39.5 32.6 29.1 null 1																									
1017/2025 18:00 10.1 15.4 15.0 15.0 15.0 15.0 15.1 15.		9.9	15.1			14.9	12.9	14.0			24.5	48.6	23.4		38.7	34.8		14.6		36.9	24.1	37.5	29.5		
10/17/2025 20:00	10/17/2025 17:00	10.0	15.2	14.8	12.8	15.9	14.2	14.1	null	13.8	25.9	41.1	22.0	57.8	76.6	39.7	null	14.6	27.4	36.7	24.2	38.5	31.5	26.5	null
10/17/2025 20:00 10.4 15.5 15.1 13.0 16.6 14.9 14.5 null 16.3 24.0 27.9 18.5 32.1 31.4 38.9 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 10/17/2025 20:00 10.2 15.4 15.2 13.0 16.7 15.0 14.6 null 12.5 23.4 28.8 17.4 27.9 28.1 36.4 null 15.1 27.1 36.2 24.2 40.1 32.6 27.9 null 10/17/2025 20:00 10.2 15.4 15.2 12.9 16.8 15.0 14.8 null 10.4 21.0 26.4 16.1 27.4 24.7 32.6 null 14.8 26.5 35.7 23.7 40.3 32.6 28.6 null 10/17/2025 20:00 9.9 15.4 15.2 12.9 16.8 15.0 15.0 null 10.2 19.1 25.0 15.9 22.9 24.2 37.4 null 14.4 26.2 35.5 23.5 40.2 32.5 28.9 null 10/18/2025 00:00 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 9.4 21.4 24.4 17.5 23.4 23.8 33.4 11.9 14.2 26.0 35.4 23.2 40.1 32.5 28.9 null 10/18/2025 00:00 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.2 25.7 35.4 22.8 40.1 32.4 28.9 null 10/18/2025 00:00 9.7 15.3 15.2 12.8 16.8 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.1 25.5 35.4 22.8 40.1 32.4 28.9 null 10/18/2025 00:00 9.7 15.3 15.2 12.5 16.8 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.1 25.5 35.4 22.8 40.1 32.4 28.9 null 10/18/2025 00:00 9.5 14.8 15.2 12.5 16.8 15.1 15.2 null 10.1 21.0 32.8 17.3 34.1 29.1 28.3 12.8 14.0 25.3 35.5 22.3 39.5 32.6 29.1 null 10/18/2025 00:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 10.8 18.9 28.3 20.8 45.1 25.3 35.5 25.3 35.5 22.2 39.5 32.6 29.1 null 10/18/2025 00:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 35.8 22.2 39.0 32.7 29.4 null 10/18/2025 00:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 30.0 32.2 29.6 null 10/18/2025 00:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 22.0 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 30.0 32.3 29.6 null 10/18/2025 00:00 9.5 14.7 15.2 12.3 16.7 15.2 15.1 null 22.0 37.3 91.4 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/2025 10:00 9.5 14.8 15.5 15.1 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/2025 10:00 0.																									
101/17/202521:00 10.4 15.4 15.2 13.0 16.7 15.0 14.6 null 12.5 23.4 28.8 17.4 27.9 28.1 36.4 null 15.1 26.8 36.0 23.9 40.2 32.7 28.4 null 101/17/202522:00 10.2 15.4 15.2 12.9 16.8 15.0 14.8 null 10.4 21.0 26.4 16.1 27.4 24.7 32.6 null 14.8 26.5 35.7 23.7 40.3 32.6 28.6 null 101/17/20252:00 9.9 15.4 15.2 12.9 16.8 15.0 15.0 null 10.2 19.1 25.0 15.9 22.9 24.2 37.4 null 14.8 26.5 35.5 23.5 40.2 32.5 28.9 null 101/18/20250:00 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 9.4 21.4 24.4 17.5 23.4 23.8 33.4 11.9 14.2 26.0 35.4 23.2 40.1 32.5 28.9 null 101/18/20250:00 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 25.5 35.0 5 12.5 16.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 25.5 10.5 14.2 12.5 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 25.5 10.5 14.2 12.5 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.2 14.1 25.5 35.4 22.8 40.1 32.5 28.9 null 101/18/20250:00 9.5 14.9 15.2 12.5 16.8 15.1 15.2 null 10.1 10.8 18.9 28.3 17.3 34.1 29.1 28.3 12.8 14.0 25.3 35.5 22.3 39.5 32.6 29.1 null 101/18/20250:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 38.8 22.2 39.5 32.6 29.1 null 101/18/20250:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 38.8 22.2 39.0 32.7 29.4 null 101/18/20250:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 38.8 22.2 39.0 32.7 29.4 null 101/18/20250:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 38.8 22.2 39.0 32.7 29.4 null 101/18/20250:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 38.0 32.2 29.6 null 101/18/20250:00 9.5 14.8 15.4 12.3 16.8 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.1 32.4 29.7 null 101/18/20250:00 9.5 14.8 15.4 12.3 16.8 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.2 29.6 null 101/18/20250:00 9.5 14.8 15.4 12.3 15.5 15.1 null 22.4 37.2 4																									
10/17/202523:00 9.9 15.4 15.2 12.9 16.8 15.0 14.8 null 10.4 21.0 26.4 16.1 27.4 24.7 32.6 null 14.8 26.5 35.7 23.7 40.3 32.6 28.9 null 10/18/20250:00 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 9.4 21.4 24.4 17.5 23.4 23.8 33.4 11.9 14.2 26.0 35.5 23.5 40.2 32.5 28.9 null 10/18/20250:00 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 9.4 21.4 24.4 17.5 23.4 23.8 33.4 11.9 14.2 26.0 35.5 23.5 40.2 32.5 28.9 null 10/18/20250:00 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 12.7 22.8 26.8 18.4 28.6 24.3 29.4 12.0 14.2 25.7 35.4 22.8 40.1 32.5 28.9 null 10/18/20250:00 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 25.5 30.5 12.0 14.1 25.5 35.4 22.8 40.1 32.5 28.9 null 10/18/20250:00 9.6 15.1 15.3 12.6 16.9 15.1 15.2 null 10.7 22.9 27.7 17.4 24.3 25.5 30.5 12.0 14.1 25.5 35.5 22.3 39.5 32.6 29.1 null 10/18/20250:00 9.5 14.9 15.2 12.5 16.8 15.1 15.1 null 10.8 18.9 28.3 28.8 45.1 29.1 28.3 12.8 14.0 25.3 35.5 22.3 39.5 32.6 29.1 null 10/18/20250:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 10.8 18.9 28.3 28.8 45.1 25.3 25.3 12.2 13.9 25.0 35.2 22.2 39.5 32.6 29.1 null 10/18/20250:00 9.5 14.9 15.2 12.3 16.7 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 38.8 22.2 39.0 32.7 29.4 null 10/18/20250:00 9.5 14.9 15.2 12.3 16.7 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 38.8 22.2 39.0 32.7 29.4 null 10/18/20250:00 9.5 14.7 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 38.0 32.3 29.6 null 10/18/20250:00 9.5 14.7 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.3 35.4 21.7 38.1 32.4 29.7 null 10/18/20250:00 9.5 14.7 15.3 15.2 15.1 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 10/18/20250:00 9.5 14.7 15.3 15.4 15.1 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 10/18/20250:00 9.5 14.7 15.3 15.4 15.1 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 10/18/20251:00 10.0 15.5 15.7 15.8 15.4 15.1 null 22						-																			
101/18/2025 00:00 9.7 15.3 15.2 12.8 16.8 15.0 15.0 null 9.4 21.4 24.4 17.5 23.4 23.8 33.4 11.9 14.2 26.0 35.4 23.2 40.1 32.5 28.9 null 101/18/2025 00:00 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 10.7 22.8 26.8 18.4 28.6 24.3 29.4 12.0 14.2 25.7 35.4 23.0 40.3 32.5 28.9 null 101/18/2025 00:00 9.7 15.2 15.2 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.1 25.5 35.4 22.8 40.1 32.5 28.9 null 101/18/2025 00:00 9.6 15.1 15.3 12.6 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.1 25.5 35.4 22.8 40.1 32.5 28.9 null 101/18/2025 00:00 9.5 14.9 15.2 12.5 16.8 15.1 15.2 null 10.1 21.0 32.8 17.3 34.1 29.1 28.3 12.8 14.0 25.3 35.5 22.3 39.5 32.6 29.1 null 101/18/2025 00:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 35.8 22.2 39.5 32.6 29.1 null 101/18/2025 00:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 35.8 22.2 39.0 32.7 29.4 null 101/18/2025 00:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 18.8 30.0 32.2 29.6 null 101/18/2025 00:00 9.5 14.7 15.2 12.3 16.7 15.1 15.2 null 20.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.4 21.7 38.1 32.4 29.6 null 101/18/2025 00:00 9.5 14.7 15.3 15.6 12.4 15.4 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 101/18/2025 00:00 9.6 14.8 15.4 12.3 16.9 15.3 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 101/18/2025 10:00 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.2 29.4 null 101/18/2025 10:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 28.8 46.5 44.9 23.1 16.1 15.2 25.4 37.4 22.5 40.5 35.2 29.6 null 101/18/2025 10:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 28.8 46.5 44.9 23.1 16.1 15.2 25.4 37.4 22.5 40.5 35.2 29.6 null 101/18/2025 10:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 28.8 45.5 45.5 30.9 15.5 15.5 15.5 15.5 15.5 15.	10/17/2025 22:00	10.2	15.4	15.2	12.9	16.8	15.0	14.8	null	10.4	21.0	26.4	16.1	27.4	24.7	32.6	null	14.8	26.5	35.7	23.7	40.3	32.6	28.6	null
10/18/202501:00 9.7 15.3 15.2 12.7 16.9 15.1 15.1 null 12.7 22.8 26.8 18.4 28.6 24.3 29.4 12.0 14.2 25.7 35.4 22.8 40.1 32.5 28.9 null 10/18/202502:00 9.6 15.1 15.2 12.7 16.9 15.1 15.2 null 10.7 22.9 27.7 17.4 24.3 25.5 35.5 12.0 14.1 25.5 35.4 22.8 40.1 32.4 28.9 null 10/18/202503:00 9.6 15.1 15.2 12.8 16.9 15.1 15.2 null 10.1 21.0 32.8 17.3 34.1 29.1 28.3 12.8 14.0 25.3 35.5 22.3 39.5 32.6 29.1 null 10/18/202505:00 9.5 14.9 15.2 12.5 16.8 15.1 15.1 null 10.8 18.9 28.3 20.8 45.1 25.3 25.3 12.2 13.9 25.0 35.2 22.2 39.5 32.6 29.1 null 10/18/202506:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.6 24.5 35.8 22.2 39.0 32.7 29.4 null 10/18/202506:00 9.4 14.7 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 36.0 32.3 29.6 null 10/18/202506:00 9.5 14.8 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 36.0 32.3 29.6 null 10/18/202506:00 9.5 14.7 15.3 12.3 16.8 15.2 15.1 null 14.3 25.0 39.4 22.5 35.8 30.4 22.0 11.7 13.7 24.3 35.4 21.7 38.1 32.4 29.7 null 10/18/202506:00 9.5 14.8 15.4 12.3 16.7 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202506:00 9.5 14.7 15.3 12.3 16.8 15.2 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 10/18/202510:00 9.8 15.0 15.6 12.4 17.2 15.4 15.1 null 23.7 39.1 48.0 31.7 80.3 50.6 20.5 18.9 14.5 24.6 36.5 21.6 40.0 33.8 29.4 null 10/18/202510:00 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.3 29.4 null 10/18/202510:00 10.2 15.3 15.9 12.8 17.5 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/202510:00 10.0 15.2 15.7 15.9 15.8 15.2 null 21.2 33.7 48.2 29.8 46.7 44.9 25.1 15.5 15.5 25.9 37.6 22.7 41.1 35.2 29.8 null 10/18/202510:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.2 29.8 null																									
10/18/202502:00 9.7 15.2 15.2 12.7 16.9 15.1 15.1 null 10.7 22.9 27.7 17.4 24.3 23.5 30.5 12.0 14.1 25.5 35.4 22.8 40.1 32.4 28.9 null 10/18/202503:00 9.5 14.9 15.2 12.5 18.8 15.1 15.2 null 10.8 18.9 28.3 20.8 45.1 25.3 25.3 12.2 13.9 25.0 35.5 22.2 39.5 32.6 29.1 null 10/18/202503:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 35.8 22.2 39.5 32.6 29.1 null 10/18/202503:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 30.0 32.3 29.6 null 10/18/202503:00 9.5 14.7 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 30.0 32.3 29.6 null 10/18/202503:00 9.5 14.7 15.3 12.3 16.8 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202503:00 9.5 14.8 15.4 12.3 16.9 15.3 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 36.6 33.2 29.5 null 10/18/20251:00 0.8 15.6 15.4 12.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/20251:00 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 22.4 40.1 34.7 29.5 null 10/18/20251:00 10.2 15.3 15.8 12.7 17.4 15.5 15.1 null 21.1 32.1 34.4 22.8 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/20251:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 34.4 22.9 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/20251:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 34.4 22.9 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/20251:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 34.4 22.9 84.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/20251:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/20251:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.2 33.7 48.2 28.9 46.7 44.9 23.1 15.5 15.5 15.5 25.9 37.4 22.5 40.5 35																									
10/18/20250300 9.6 15.1 15.3 12.6 16.9 15.1 15.2 null 10.1 21.0 32.8 17.3 34.1 29.1 28.3 12.8 14.0 25.3 35.5 22.3 39.5 32.6 29.1 null 10/18/20250400 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 11.3 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 35.8 22.2 39.5 32.6 29.1 null 10/18/20250600 9.4 14.7 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 38.0 32.2 29.6 null 10/18/20250700 9.5 14.7 15.2 12.3 16.7 15.2 15.1 null 20.9 37.6 42.2 25.3 35.4 22.0 11.7 13.7 24.3 35.4 21.7 38.1 32.4 29.9 null 10/18/20250700 9.5 14.7 15.3 12.3 16.8 15.2 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.6 null 10/18/20250700 9.6 14.8 15.4 12.3 16.9 15.3 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.6 null 10/18/20251000 9.8 15.0 15.6 12.4 17.2 15.4 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.3 29.4 null 10/18/20251000 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.3 29.4 null 10/18/20251300 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.4 22.5 40.5 35.2 29.6 null 10/18/20251300 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.4 22.5 40.5 35.2 29.6 null 10/18/20251300 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.4 22.5 40.5 35.2 29.6 null 10/18/20251300 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.4 22.5 40.5 35.2 29.6 null 10/18/20251300 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.2 29.8 null 10/18/20251300 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.2 29.8 null																									
10/18/202504:00 9.5 14.9 15.2 12.5 16.8 15.1 15.1 null 10.8 18.9 28.3 20.8 45.1 25.3 25.3 12.2 13.9 25.0 35.2 22.2 39.5 32.6 29.1 null 10/18/202506:00 9.5 14.8 15.2 12.4 16.8 15.1 15.2 null 12.1 17.3 52.5 25.0 41.1 28.8 28.9 13.4 13.8 24.5 35.8 22.2 39.0 32.7 29.4 null 10/18/202506:00 9.4 14.7 15.2 12.3 16.7 15.2 15.1 null 14.3 25.0 39.4 22.5 35.8 30.4 22.0 11.7 13.7 24.3 35.2 21.8 38.0 32.3 29.6 null 10/18/202506:00 9.5 14.7 15.3 12.3 16.7 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202509:00 9.6 14.8 15.4 12.3 16.9 15.3 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202509:00 9.8 15.0 15.6 12.4 17.2 15.4 15.1 null 27.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.6 null 10/18/202510:00 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/202510:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/202512:00 10.4 15.5 15.9 12.8 17.5 15.8 16.2 null 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 15.5 15.9 37.4 22.5 40.5 35.7 29.8 null 10/18/202514:00 10.4 15.5 15.9 12.8 17.5 15.8 16.2 null 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 15.5 15.5 15.5 15.5 15.5																									
10/18/202507:00 9.4 14.7 15.2 12.3 16.7 15.1 15.2 null 12.2 18.6 33.0 19.4 28.5 27.5 27.5 12.6 13.7 24.2 35.2 21.8 38.0 32.2 29.6 null 10/18/202507:00 9.5 14.7 15.2 12.3 16.7 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.4 21.7 38.1 32.4 29.7 null 10/18/202509:00 9.5 14.7 15.3 15.4 15.3 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202509:00 9.6 14.8 15.4 12.3 16.9 15.3 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 null 10/18/202510:00 9.8 15.0 15.6 12.4 17.2 15.4 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.2 29.4 null 10/18/202510:00 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.3 29.4 null 10/18/202513:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/202513:00 10.4 15.5 15.9 12.8 17.5 15.8 15.2 null 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 25.9 37.4 22.5 40.5 35.2 29.6 null 10/18/202513:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.4 22.5 40.5 35.2 29.6 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.4 22.5 40.5 35.2 29.6 null	10/18/2025 04:00		14.9	15.2	12.5	16.8	15.1	15.1	null	-	18.9		20.8	45.1	25.3	25.3	12.2	13.9	25.0	35.2	22.2			29.1	null
10/18/202509:00 9.6 14.7 15.2 12.3 16.8 15.2 15.1 null 14.3 25.0 39.4 22.5 35.8 30.4 22.0 11.7 13.7 24.3 35.4 21.7 38.1 32.4 29.7 null 10/18/202509:00 9.6 14.8 15.4 15.1 15.3 16.8 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202509:00 9.8 15.0 15.6 12.4 17.2 15.4 15.1 null 23.7 39.1 48.0 31.7 80.3 50.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202510:00 9.8 15.0 15.6 12.4 17.2 15.4 15.1 null 23.7 39.1 48.0 31.7 80.3 50.6 20.5 18.9 14.5 24.6 36.5 21.6 40.0 33.8 29.4 null 10/18/202511:00 10.0 15.2 15.7 12.5 17.3 15.5 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.3 29.4 null 10/18/202513:00 10.4 15.5 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.8 null 10/18/202513:00 10.4 15.5 15.9 15.8 15.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null																									
10/18/202510:00 9.5 14.7 15.3 12.3 16.8 15.2 15.1 null 26.0 31.1 40.7 25.8 46.3 36.6 20.8 16.3 14.1 24.3 35.8 21.7 38.5 32.6 29.6 null 10/18/202510:00 9.8 15.0 15.4 12.3 15.4 15.1 null 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 32. 29.5 null 10/18/202510:00 10.0 15.2 15.7 12.5 15.3 15.1 null 22.7 39.1 48.0 31.7 80.3 50.6 20.5 18.9 14.5 24.6 36.5 21.6 40.0 33.8 29.4 null 10/18/202510:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 40.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/202513:00 10.4 15.5 15.9 12.8 17.5 15.8 15.2 null 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 15.5 15.5 15.9 12.8 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null																									
10/18/202510:00 9.6 14.8 15.4 12.3 16.9 15.3 15.1 nult 20.9 37.6 42.2 28.2 66.1 46.5 20.6 19.7 14.2 24.4 36.1 21.5 38.6 33.2 29.5 nult 10/18/202510:00 9.8 15.0 15.6 12.4 17.2 15.4 15.1 nult 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.2 29.4 nult 10/18/202510:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 nult 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 38.8 34.3 29.4 nult 10/18/202510:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 nult 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 nult 10/18/202510:00 10.4 15.5 15.9 12.8 17.5 15.8 15.2 nult 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 25.9 37.4 22.5 40.5 35.2 29.6 nult 10/18/202510:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 nult 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 nult																									
10/18/202511:00 10.0 15.2 15.7 12.5 15.8 12.7 12.5 15.1 15.1 null 22.4 37.2 48.5 30.9 54.3 44.9 22.7 18.0 14.8 25.1 37.1 21.9 39.8 34.3 29.4 null 10/18/202512:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/202513:00 10.4 15.5 15.9 15.8 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null																									
10/18/202512:00 10.2 15.3 15.8 12.7 17.4 15.7 15.1 null 21.1 32.1 44.2 29.8 46.5 44.9 23.1 16.1 15.2 25.4 37.3 22.2 40.1 34.7 29.5 null 10/18/202513:00 10.4 15.5 15.9 12.8 17.5 15.8 15.2 null 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 25.9 37.4 22.5 40.5 35.2 29.6 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null																									
10/18/202513:00 10.4 15.5 15.9 12.8 17.5 15.8 15.2 null 21.7 34.5 41.9 28.6 45.0 44.7 25.1 15.5 15.5 25.9 37.4 22.5 40.5 35.2 29.6 null 10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null																									
10/18/202514:00 10.5 15.7 16.0 12.9 17.7 15.9 15.3 null 21.2 33.7 48.2 28.9 48.7 43.8 30.7 16.6 15.8 26.3 37.6 22.7 41.1 35.7 29.8 null																									
	10/18/2025 15:00	10.6	15.8	16.1	13.1	17.8	16.1	15.5	null	19.1	32.8	58.4	29.0	45.8	40.4	35.7	18.4	16.0	26.5	38.0	23.0	41.4	35.9	30.1	null

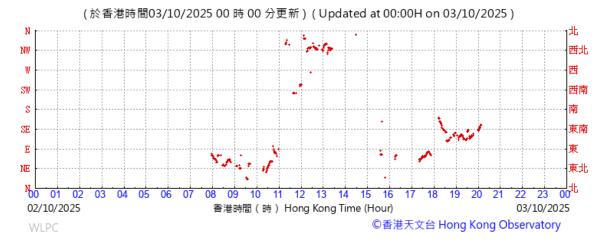

No.	3																								
March	Time													RSP (µg/r											
March Marc	10/18/2025 16:00													M11 46.7											
March Marc																									
No. of the content																									
March Marc																									
Section																			-						
March Marc																									
March Marc			16.1														12.1								
Section Sect																									
Secondary 19																			-						
March Marc																									
March Marc	10/19/2025 04:00	11.0	16.0	16.4	13.3	17.2	15.1	15.8	15.2	14.3	19.2	28.1	21.9	39.7	27.2	28.6	11.8	16.4	26.9	39.0	23.6	40.0	35.1	29.1	15.2
Section																				-					
Section Column																									
Section	10/19/2025 09:00	11.9	16.8	16.8			15.7	16.3	15.8								24.9	17.4			24.5	39.3	36.0		
Section																									
Marche M			-							-		-							-						
			-	-																					
	10/19/2025 15:00	12.2	16.8	16.8	14.2	17.9	15.8	15.3	15.9	19.9	27.3	34.4	26.5	39.9	34.7	21.7	14.2	17.8	26.6	35.7	24.5	37.2	34.9	28.0	15.9
March Marc																									
	10/19/2025 20:00	12.2			14.1		15.7					29.6				23.9	15.8				24.6	36.7	34.4		
Section 19					-								-						-						
March Marc																									
										_															
December 1969 197																									
	10/20/2025 02:00		17.4	17.0		18.9	16.2	10.9	17.0		18.8		16.6	28.4	25.8	23.8		19.7	27.4		25.7		35.5	24.4	17
Page																									
December 192 192 193 194 195												-													
120 125 125 125 125 125 125 125 125																									
1000000000000000000000000000000000000		12.9			13.9					13.2				28.2	23.1		12.4		26.3	33.5			34.0		
140000011010 116 144 115 125 126 129 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 146 120 120 120 146 120 1																									
										-															
																					-				
1000000000000000000000000000000000000																			-		-				
1000000000000 10 12 13 13 10 14 15 10 16 17 16 16 17 16 17 17	10/20/2025 13:00	10.6	13.6	14.1	11.4	15.3	13.0	7.5	15.4			43.5		37.3		9.6	12.6	16.5			20.5	34.7	30.5		
Monopolity Mon		-																							
1999(1999) 120																									
1400000000000																									
1000000000000 1000000000000 100000000	10/20/2025 18:00	9.1	11.5	12.5	9.7	13.3	11.1		16.4	12.1	18.7	34.9		34.2	26.1	15.5	29.2	15.1	21.3	34.0	18.8	34.2	28.4	17.8	
1907/2009/2009 28 103 116 106 112 112 11 11 10 10 112 11 11						-																			
1000000000000 1																									
10000000000000 7																									
10011020251000 74																									
10011020201000		7.6	-				9.2			_			-												
1001/100285000 6.9 8.8 9.5 7.5 9.8 8.8 4.3 17.6 6.2 9.2 9.8 8.8 1.3 11.2 9.4 12.2 12.3 17.8 30.2 15.3 26.2 23.8 12.9 17.8 1001/10028500 6.3 8.8 7.1 9.1 7.8 30.2 7.5 2.8 12.5 17.8 1001/10028500 6.3 8.8 7.1 9.1 7.8 30.2 7.5 6.1 9.3 10.2 8.1 11.9 9.8 8.1 10.7 11.9 17.3 26.1 14.4 26.0 22.8 12.1 17.8 17.																									
1001100000000000000000000000000000000									-																
INDITIONS 1000 6.3 8.0 8.6 7.0 8.8 7.5 3.7 7.5 6.2 8.6 12.7 8.1 13.1 10.3 6.6 12.0 11.7 17.0 28.8 14.5 27.6 22.4 11.7 17.5 1001100050000 5.7 7.5 8.0 6.6 8.1 7.0 7.0 3.4 17.5 7.5 12.0 19.4 9.6 18.0 14.3 15.0 14.5 11.1 15.0 22.4 11.2 20.0 21.0 11.1 17.5 11.0 11.																									
101712039 1000 61 77 83 68 8.5 72 33 175 6.7 98 14.7 84 13.4 116 66 11.4 11.4 16.7 224 14.2 28.0 21.9 11.3 175 10171203 1000 55 73 77 77 6.4 7.9 6.7 3.3 17.6 8.4 11.1 12.7 10.3 4.3 5.9 11.8 11.1 11.5	10/21/2025 05:00	6.5	8.2	8.8	7.1	9.1	7.8	3.9	17.5	6.1	9.3	10.2	8.1	11.9	9.8	8.1	10.7	11.9	17.3	29.1	14.8	28.0	22.8	12.1	17.5
1997 1995 1990 5 9 7 5 8 8 8 6 8 8 1 7 0 34 175 75 120 194 9e 149 143 5 9 149 111 183 276 138 282 214 111 175 1997 1995 1990 5 7 7 7 6 7 7 7 6 7 9 7 7 6 8 132 179 15 15 160 275 114 489 207 5 0 222 100 157 288 132 284 203 109 103 133 131 109 153 135 136 120 153 139 149 115 15 160 275 114 489 207 5 0 222 100 157 288 132 284 203 100 153 133 109 153 135 130 109 153 135 130 109 153 153 153 109 153 153 109 153 153 153 109 153 153 109 153 153 109 153 153 109 153 153 109 153 153 109 153 153 109 153 153 109 153 153 153 109 153 109 153 153 109 153 153 109 153 109 153 153 109 153 109 153 153 109 153 109 153 153 109 153 109 153 109 153 153 109 153 109 153 109 153 153 109 153 10																									
INFORMATION Fig. 2007 Fig. 2007 Fig. 30 Fig. 3 Fig. 3 Fig. 4 Fig. 3				8.3	6.8	8.5		3.5	17.5	6./		14./	8.4				11.4	11.4					21.9		
1007107001 100	10/21/2020 00:00	0.0	7.0	7.7	6.4	7.9	7.0	3.3	17.6	8.4	12.0	22.7	10.3	10.0	14.0	0.0	18.8	10.8	10.0		10.0	20.2	21.0		
1001/20031200 50 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 72 65 70 68 70 70 70 70 70 70 70 7	10/21/2025 10:00	5.5	7.0	7.5	6.2	7.7	6.5	3.3	17.9	11.5	15.6	27.5	11.4	46.9	20.7	5.0	23.2	10.6	15.7	25.8	13.2	26.4	20.5	10.6	17.9
1071/20051500																									
100212002514000 4.9 6.2 6.4 5.5 6.8 5.5 3.2 19.1 7.8 12.6 15.1 10.6 22.4 15.1 7.8 7.3 7.2 9.7 14.4 22.5 12.1 24.6 18.3 9.9 19.1 100212002515000 4.6 5.9 5.8 5.5 5.3 3.2 19.1 18.2 15.7 22.3 11.5 13.3 16.7 12.2 18.9 9.2 13.9 21.1 11.2 23.5 17.2 9.6 19.1 100212002515000 4.6 5.9 5.8 5.5 5.0 5.0 3.1 18.5 7.5 15.9 12.2 13.3 13.1 16.7 12.2 18.9 9.2 13.9 19.1 19.0 10.7 23.8 17.2 9.8 19.1 19.0 10.7 23.8 17.2 9.8 19.1 19.0 10.7 23.8 17.2 19.1 19.0 10.7 23.8 17.2 19.1 19.0 10.7 23.8 17.2 19.1																									
10021/200251500																									
1001/12002817000 4.5 5.9 5.8 5.1 6.3 5.0 3.1 15.5 7.5 15.9 12.2 10.3 27.0 14.3 13.1 15.2 8.9 13.7 19.9 10.9 22.2 16.7 9.5 15.8 1001/12002813000 4.3 5.5 5.3 4.8 7.1 4.6 3.2 17.2 7.3 11.6 13.7 9.0 19.4 12.3 15.9 13.5 8.5 13.1 18.1 10.4 28.3 15.6 9.5 17.8 1001/120028000 4.3 5.5 5.3 4.8 7.1 4.6 3.2 17.2 7.3 11.6 13.7 9.0 19.4 12.3 15.9 13.5 8.5 13.1 18.1 10.4 28.3 15.6 9.5 17.8 1001/120028000 3.9 5.1 4.9 4.6 6.6 4.2 3.4 10.0 6.3 9.8 14.6 8.1 15.1 10.7 14.2 11.9 7.9 12.4 10.9 9.9 27.6 14.6 9.8 1001/120028000 3.7 4.8 4.5 4.2 6.2 3.9 3.5 15.1 4.7 7.1 9.1 6.6 14.2 7.7 11.8 7.9 7.5 11.8 10.0 5.5 27.0 13.8 9.8 13.1 10.0 10.0 10.0 10.0 13.8 13.1 10.0 10.0 10.0 10.0 13.8 13.1 10.0 10.0 10.0 13.0 13.1 10.0 10.0 13.0 13.0 10.0 10.0 13.0																									
1012/20251800																									
1001/10025000 43 5.5 5.3 4.8 7.1 4.6 3.2 17.2 7.3 11.6 13.7 9.0 19.4 11.23 15.9 13.5 8.5 13.1 13.1 10.4 28.3 15.6 9.5 17.2 1001/10025000 3.5 5.1 4.9 4.6 6.6 4.2 3.4 16.0 6.3 9.8 14.6 8.5 13.1 13.1 10.4 28.3 15.6 9.5 17.2 1001/10025000 3.5 5.5 4.9 4.6 6.6 4.2 3.4 16.0 6.3 9.8 14.6 8.5 13.1 13.1 10.4 28.3 15.6 9.8 16.0 1001/10025000 3.5 4.9 4.7 4.4 6.4 4.0 3.5 15.6 5.8 8.9 4.6 6.6 4.2 7.7 13.8 8.9 13.6 9.7 7.7 12.1 16.4 9.6 8.7 22.0 13.5 13.5 10.0 1																									
1012170252000																									
10/21/20052200 3.8 4.9 4.7 4.4 6.4 4.0 3.5 15.6 5.8 8.9 9.4 7.4 13.8 8.9 13.6 9.7 7.7 12.1 16.4 9.6 27.2 14.2 9.9 15.6 10/21/2005200 3.6 4.6 4.3 4.2 4.0 6.0 3.7 3.5 14.7 5.0 7.3 8.5 6.8 11.9 7.2 12.1 7.4 7.4 11.6 15.8 9.3 26.7 13.4 9.8 14.7 10/22/2005000 3.5 4.5 4.2 4.1 5.9 3.6 3.5 14.4 5.2 6.4 5.9 3.6 6.1 11.9 7.2 12.1 7.4 7.4 11.6 15.8 9.3 26.7 13.4 9.8 14.7 10/22/2005000 3.4 4.4 4.1 4.0 5.8 3.5 3.6 14.1 4.1 5.5 7.3 5.7 7.0 6.4 9.3 6.7 7.2 11.2 15.3 9.0 28.3 12.9 9.1 10/22/2005000 3.4 4.4 4.1 4.0 5.8 3.5 3.6 14.1 4.1 5.5 7.3 5.7 7.0 6.4 9.3 6.7 7.2 11.2 15.3 9.0 28.3 12.9 9.5 13.9 10/22/2005000 3.3 4.3 4.3 4.0 3.9 5.7 3.4 3.6 13.6 3.9 5.2 4.1 5.3 6.6 5.8 7.8 5.8 5.8 6.8 10.9 14.8 8.8 25.5 12.3 9.6 13.9 10/22/2005000 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.6 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.7 14.6 8.7 25.8 12.2 9.6 13.4 10/22/2005000 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.6 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.7 14.6 8.7 25.8 12.2 9.6 13.4 10/22/2005000 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.1 6.8 8.8 12.9 8.5 13.4 10/22/2005000 3.3 4.3 4.3 4.3 3.9 3.9 5.7 3.4 3.7 13.1 6.8 8.8 12.9 8.5 13.4 10.5 5.1 15.6 6.6 10.4 13.1 8.5 25.6 11.8 9.5 13.4 10/22/2005000 3.2 4.3 4.0 3.9 5.5 3.4 3.8 12.9 6.6 12.0 17.5 8.4 15.1 15.6 5.1 15.5 6.6 10.4 13.1 8.5 22.1 11.1 9.5 13.1 10/22/2005000 3.2 4.3 4.0 3.9 5.5 3.4 3.8 12.9 6.6 12.0 17.5 8.4 15.1 15.6 5.1 15.6 6.6 10.4 13.1 8.3 22.1 11.3 9.5 13.1 10/22/2005000 3.2 4.3 4.0 3.8 5.5 3.4 3.8 12.9 6.6																									
10/21/2025 03:00 37 48 48 48 48 42 39 3.5 15.1 47 7.1 9.1 6.6 14.2 7.7 11.8 7.9 7.5 11.8 10.0 9.5 27.0 13.8 9.8 15.1																									
10/22/2025/2000 3.6																									
10/22/20250000 3.5 4.5 4.2 4.1 5.9 3.6 3.5 14.4 5.2 6.4 5.9 6.0 10.9 6.9 10.2 6.8 7.3 11.4 15.5 91 28.6 13.1 97 14.1 10/22/20250000 3.4 4.4 4.0 4.0 5.8 3.5 3.6 14.1 4.1 5.5 7.3 5.7 7.0 6.4 9.3 6.7 7.2 11.2 15.3 90 28.6 13.2 9.7 14.1 10/22/20250000 3.4 4.4 4.0 4.0 5.7 3.4 3.6 13.6 3.5 5.1 6.3 5.3 6.6 5.8 7.8 5.8 6.9 10.9 14.8 8.8 25.8 12.3 9.6 13.6 10/22/20250000 3.3 4.3 4.0 3.9 5.7 3.4 3.6 13.6 3.9 5.2 4.1 5.3 6.6 5.8 7.8 5.8 6.9 10.9 14.8 8.8 25.8 12.3 9.6 13.6 10/22/20250000 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.4 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.7 14.6 8.7 25.8 12.2 9.6 13.4 10/22/20250000 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.4 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.6 14.4 8.6 25.8 12.2 9.6 13.4 10/22/20250000 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.3 5.3 6.4 7.8 6.7 13.1 7.0 5.9 8.1 6.8 10.6 14.4 8.6 25.8 12.2 9.6 13.4 10/22/20250000 3.3 4.3 4.3 3.9 3.9 5.7 3.4 3.7 13.3 5.3 6.4 7.8 6.7 13.1 7.0 5.9 8.1 6.8 10.6 14.4 8.6 25.8 12.2 9.5 13.3 10/22/20250000 3.3 4.3 4.0 3.9 3.9 5.7 3.4 3.7 13.1 6.8 98 12.9 8.5 13.4 10.5 5.2 12.9 6.7 10.4 14.1 8.5 25.6 11.8 9.5 13.1 10/22/20250000 3.2 4.3 4.0 3.9 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.2 8.2 8.2 8.2 8.2 8																									
10/02/20250300 3.4 4.4 4.1 4.0 5.8 3.5 3.6 14.1 4.1 5.5 7.3 5.7 7.0 6.4 9.3 6.7 7.2 11.2 15.3 9.0 26.3 12.9 9.7 14.1 10/02/20250300 3.4 4.4 4.0 4.0 5.7 3.4 3.6 13.9 3.5 5.1 6.3 5.3 6.3 5.9 8.4 5.9 7.1 11.0 15.1 8.9 26.1 12.6 9.6 13.9 10/02/202505000 3.3 4.3 4.0 3.9 5.7 3.4 3.6 13.4 3.9 5.9 5.4 4.1 5.3 6.6 5.8 7.8 5.8 6.9 10.9 14.8 8.8 25.8 12.3 9.6 13.9 10/02/202505000 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.4 3.9 5.9 5.4 4.1 5.3 6.6 5.8 7.8 5.8 6.9 10.9 14.8 8.8 25.8 12.3 9.6 13.3 10/02/202505000 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.4 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.7 14.6 8.7 25.8 12.2 9.6 13.4 10/02/202505000 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.3 5.6 6.4 7.8 6.7 13.1 7.0 5.9 8.1 6.8 10.6 14.4 8.6 25.8 12.1 9.5 13.3 10/02/202505000 3.3 4.3 4.0 3.9 5.7 3.4 3.7 13.1 6.8 9.8 12.9 8.5 13.4 10.5 5.2 12.9 6.7 10.4 14.1 8.5 25.8 12.3 10/02/202505000 3.2 4.3 4.0 3.9 5.6 3.4 3.7 13.1 6.8 9.8 12.9 8.5 13.4 10.5 5.2 12.9 6.7 10.4 14.1 8.5 25.8 12.1 11.3 10/02/202505000 3.2 4.3 4.0 3.9 5.6 3.4 3.8 12.9 8.6 12.0 18.2 8.6 13.0 15.1 13.6 5.1 16.5 6.6 10.4 13.9 8.5 24.4 11.6 9.5 13.1 10/02/20251100 3.2 4.3 4.0 3.9 5.6 3.4 3.8 12.9 8.6 12.0 18.2 8.6 13.0 15.1 13.6 5.1 16.5 6.6 10.4 13.9 8.5 24.4 11.6 9.5 12.9 10/02/20251000 3.2 4.3 4.0 3.9 5.6 3.5 3.4 3.2 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 16.9 12.2 18.3 23.1 11.4 9.5 12.9 10/02/20251300 3.3 4.3 4.3 4.0 5.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 19.9 18.3 15.5 16.6 5.6 10.4 13.9 8.5 24.0 11.4 9.5 12.9 10/02/20251300 3.3 4.3 4.4 4.0 6.1 3.7 4.6 13.6 6.8 11.3 14.4 9.4 2.9 13.1 14.5 1.5 1.5 1.6 2.2 6.4 10.0 12.7 8.4 2.4 11.4 10.1 13.4 11.4 11.1 13.6 11.0 10/02/20251500 3.4 4.1 4.5 3.9 6.3 8.4 13.5 13.6 6.8 11.5 10.5 10.0 48.1 16.7 15.6 2.2 6.4 10.0 12.7 8.4 2.5 11.5 10.6 13.6 10/02/20251500 3.4 4.1 4.5 3.9 6.3 8.5 13.8 6.6 8.5 13.6 6.8 11.5 10.2 8.7 14.7 14.6 6.2 9.1 11.9 18.1 14.1 11.1 13.8 11.0 13.3 13.6 10/02/20251500 3.4 4.1 4.6 4.0 5.1 3.9 6.8 13.6 6.8 13.6 6.8 13.5 13.9 9.5 12.9 13.1 23.8 16.1 6.2 9.1 11.9 18.1 13.1 14.1 13.6 11.0 13.3 13.6 13.0 10/02/20251500 3.4 4.1 4.6 4.0 5.1																									
10/22/2025 05:00 3.3 4.3 4.9 4.0 3.9 5.7 3.4 3.6 13.6 3.9 5.2 4.1 5.3 6.6 5.8 7.8 5.8 6.9 10.9 14.8 8.8 25.8 12.3 9.6 13.6 10/22/2025 05:00 3.3 4.3 3.9 3.9 5.7 3.4 3.6 13.4 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.7 14.6 8.7 25.8 12.2 9.6 13.6 10/22/2025 05:00 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.3 5.3 6.4 7.8 6.7 13.1 7.0 5.9 8.1 6.8 10.6 14.4 8.6 25.8 12.1 9.5 13.3 10/22/2025 05:00 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.2 5.6 7.3 12.5 7.7 10.6 8.6 5.7 9.9 6.7 10.5 14.3 8.6 25.7 11.9 9.5 13.1 10/22/2025 05:00 3.2 4.3 4.0 3.9 5.7 3.4 3.7 13.1 0.6 7.0 11.6 17.5 8.4 15.1 13.6 5.1 16.5 6.6 10.4 13.9 8.5 24.4 11.6 9.5 13.1 10/22/2025 10:00 3.2 4.3 4.0 3.8 5.5 3.4 3.8 12.9 6.6 12.0 18.2 8.6 13.0 15.1 15.5 10.6 14.3 8.6 25.8 12.1 13.9 5.1 13.1 10/22/2025 10:00 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/2025 10:00 3.2 4.3 4.1 3.9 5.6 3.4 3.8 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/2025 10:00 3.2 4.3 4.1 3.9 5.6 3.4 3.8 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/2025 10:00 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/2025 10:00 3.3 4.3 4.3 4.4 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/2025 10:00 3.3 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/2025 10:00 3.3 4.3 4.3 4.4 4.0 5.9 5.7 3.6 4.1 13.2 6.6 8.0 10.1 13.6 6.8 10.5 13.9 5.4 10.0 12.5 8.4 22.8 6.3 10.1 12.1 12.8 13.6 13.1 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.4																									
10/22/202506:00 33 4.3 39 39 5.7 3.4 3.6 13.4 3.9 5.9 5.4 6.0 12.6 6.2 7.0 6.8 6.8 10.7 14.6 8.7 25.8 12.2 9.6 13.4 10/22/202506:00 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.3 5.3 6.4 7.8 6.7 13.1 7.0 5.9 8.1 6.8 10.6 14.4 8.6 25.8 12.1 95 13.2 10/22/202506:00 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.2 5.6 7.3 12.5 7.7 10.6 8.6 5.7 9.9 6.7 10.5 14.3 8.6 25.7 11.9 9.5 13.2 10/22/202506:00 3.3 4.3 4.0 3.9 5.7 3.4 3.7 13.1 6.8 9.8 12.9 8.5 13.4 10/22/202506:00 3.2 4.3 4.0 3.9 5.6 3.4 3.7 13.1 6.8 9.8 12.9 8.5 13.4 10/22/202506:00 3.2 4.3 4.0 3.9 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 15.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/202510:00 3.2 4.3 4.0 3.8 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/202510:00 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/202510:00 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/202510:00 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/202510:00 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/202510:00 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/202510:00 3.3 4.3 4.3 4.0 5.9 3.7 4.3 13.4 8.0 12.0 17.5 10.0 48.1 16.7 15.6 2.2 0.6 4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/202510:00 3.4 4.1 4.5 3.9 6.3 3.8 5.2 13.6 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/202510:00 3.4 4.1 4.5 3.9 6.3 3.8 5.2 13.6 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/202510:00 3.4 4.1 4.5 3.9 6.3 3.8 5.2 13.6 6.8 13.5 13.6 6.8 13.3 14.4 9.4 2.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 25.9 11.3 11.4 13.6 10/22/202510:00 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 6.8 13.6 6.8 13.8 4.9 4.9 4.2 9.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 25.9 11.3 11.4 13.6 10/22/202510:00 3.4 4.1 4.6 4.0 5.1 3																									
10/22/20250600 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.3 5.3 6.4 7.8 6.7 13.1 7.0 5.9 8.1 6.8 10.6 14.4 8.6 25.8 12.1 9.5 13.3 10/22/20250700 3.3 4.3 3.9 3.9 5.7 3.4 3.7 13.2 5.6 7.3 12.5 7.7 10.6 8.6 5.7 9.9 6.7 10.5 14.3 8.6 25.7 11.9 9.5 13.2 10/22/20250900 3.2 4.3 4.0 3.9 5.7 3.4 3.7 13.0 6.7 11.6 17.5 8.4 15.1 13.6 5.1 16.5 6.6 10.4 13.9 8.5 24.4 11.6 9.5 13.1 10/22/20251000 3.2 4.3 4.0 3.8 5.5 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 23.1 11.3 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 23.1 11.3 9.5 12.9 10/22/20251200 3.2 4.3 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/20251200 3.3 4.3 4.3 4.3 4.0 6.5 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/20251300 3.3 4.3 4.3 4.3 4.0 5.9 3.7 4.6 13.6 7.6 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 19.1 10/22/20251500 3.4 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 52.4 16.3 19.7 12.2 6.4 10.0 12.6 8.4 23.0 11.4 10.1 13.4 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 4.9 13.5 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.2 25.9 11.3 11.0 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.2 25.9 11.3 11.0 13.5 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.6 13.6 4.9 6.5 7.7 2.8 7.7 8.9 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 6.0 8.0 8.7 7.2 8.7 7.0 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.8 8.0 2.6 6.9 5.6 6.1 8.9 11.5 8.1 18.5 11.0 13.3 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 2.1 4.0 7.2 13.6 4.2																									
10/22/20250000 3.3 4.3 4.9 3.9 5.7 3.4 3.7 13.2 5.6 7.3 12.5 7.7 10.6 8.6 5.7 9.9 6.7 10.5 14.3 8.6 25.7 11.9 9.5 13.2 10/22/20250000 3.2 4.3 4.0 3.9 5.6 3.4 3.7 13.1 6.8 9.8 12.9 8.5 13.4 10.5 5.2 12.9 6.7 10.4 14.1 8.5 25.6 11.8 9.5 13.1 10/22/20251000 3.2 4.3 4.0 3.9 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 13.6 5.1 15.5 6.6 10.4 13.9 8.5 24.4 11.6 9.5 13.0 10/22/20251000 3.2 4.3 4.0 3.8 5.5 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/20251000 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.5 12.9 10/22/20251000 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/20251000 3.3 4.3 4.3 4.0 5.9 3.7 4.3 13.4 8.0 12.0 17.5 10.0 48.1 16.7 15.6 22.0 6.4 10.0 12.7 8.4 24.0 11.4 10.1 13.6 10/22/20251000 3.3 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 52.4 16.3 19.7 21.2 6.4 10.0 12.6 8.4 25.3 11.5 10.0 13.5 10/22/20251000 3.3 4.3 4.1 4.5 3.9 6.3 8.8 4.9 13.5 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/20251000 3.4 4.1 4.5 3.9 6.3 13.8 5.5 13.6 6.6 8.5 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/20251000 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.6 8.5 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 19.4 11.2 11.9 13.6 10/22/20251000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.6 8.5 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 19.4 11.2 11.9 13.6 10/22/20251000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.6 8.5 12.1 8.3 13.9 14.4 25.2 15.0 6.3 9.4 12.3 8.2 19.4 11.2 11.9 13.6 10/22/20251000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 6.8 13.6 6.0 8.0 8.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 11.0 13.8 11.0 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 11.0 13.8 11.0 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.2																									
10/22/20251000 3.2 4.3 4.0 3.9 5.6 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.4 3.8 12.9 9.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.4 3.8 12.9 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.4 3.8 12.9 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.5 12.9 10/22/20251200 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/20251500 3.3 4.3 4.3 4.3 4.0 5.9 3.7 4.6 13.6 7.6 12.1 16.1 9.9 5.4 16.3 19.7 12.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/20251500 3.3 4.3 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 5.4 16.3 19.7 12.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 4.9 13.5 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.2 25.9 11.3 11.0 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.2 25.9 11.3 11.0 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.2 25.9 11.3 11.0 13.6 10/22/20251500 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 25.9 11.3 11.0 13.5 13.6 10/22/20251500 3.4 4.1 4.5 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/2025100 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/2025200 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 6.7 7.2 7.2 8.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 6.9 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.8 11.3 8.1 11.8 11.0 10.9 15.2 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 5.2 5.0 6.0 6.1 7.7 6.6																									13.2
10/22/20251:000 3.2 4.3 4.0 3.8 5.5 3.4 3.8 12.9 6.6 12.0 18.2 8.6 18.0 15.1 5.0 19.6 6.4 10.2 13.5 8.3 23.2 11.4 9.5 12.9 10/22/20251:000 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 23.1 11.3 9.5 12.9 10/22/20251:000 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/20251:000 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/20251:000 3.3 4.3 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 5.24 16.3 19.7 21.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/20251:000 3.3 4.3 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 5.24 16.3 19.7 21.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/20251:000 3.3 4.1 4.5 3.9 6.3 3.8 5.2 13.6 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/20251:000 3.4 4.1 4.5 3.9 6.3 3.8 5.2 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/20251:000 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.6 8.5 12.1 8.3 13.9 11.4 25.2 15.0 6.3 9.4 12.3 8.2 19.4 11.2 11.9 13.6 10/22/20251:000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 11.2 13.6 10/22/20251:000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/20252:000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.7 2.8 7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 13.6 10/22/20252:000 3.4 4.1 4.6 4.0 5.1 3.9 6.8 13.6 6.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 13.6 10/22/20252:000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 5.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 13.6 10/22/20252:000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.8 8.8 0.2 5.6 9.5 6.1 8.9 11.5 8.1 18.5 11.0 13.8 13.6 10/22/20252:000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 4.2 5.7 6.0 6.6 6.7 7.0 6.4 30.2 8.0 6.1 8.8 11.4 8.1 18.0 10.9 13.6 13.6 10/22/20252:000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.		-										-													
10/22/20251200 3.2 4.3 4.1 3.8 5.6 3.4 3.8 12.9 8.2 13.7 19.0 10.8 25.8 17.6 5.4 22.8 6.3 10.1 13.1 8.3 23.1 11.3 9.5 12.9 10/22/20251200 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.5 12.9 10/22/20251300 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.8 8.3 22.8 11.3 9.5 13.2 10/22/20251500 3.3 4.3 4.3 4.0 5.9 3.7 4.3 13.4 8.0 12.0 17.5 10.0 48.1 16.7 15.6 22.0 6.4 10.0 12.7 8.4 24.0 11.4 10.1 13.4 10/22/20251500 3.3 4.3 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.9 9.5 12.9 12.1 16.9 12.2 11.0 11.0																									
10/22/202512:00 3.2 4.3 4.1 3.9 5.6 3.5 3.9 12.9 9.5 14.3 16.3 12.1 18.9 18.3 7.5 24.1 6.4 10.1 12.8 8.3 22.8 11.3 9.6 12.9 10/22/202513:00 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 27.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/202515:00 3.4 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 52.4 16.3 19.7 21.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/202515:00 3.4 4.1 4.5 3.9 6.2 3.8 4.9 13.5 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 10.0 13.6 10/22/202515:00 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 5.9 11.3 11.0 13.5 10/22/202515:00 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 5.9 11.3 11.0 13.5 10/22/202515:00 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 5.9 11.3 11.0 13.5 10/22/202515:00 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 5.9 11.3 11.0 13.5 10/22/202515:00 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 19.4 11.2 11.9 13.6 10/22/202515:00 3.4 4.1 4.5 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 5.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 6.5 7.2 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 5.7 7.2 8.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 7.7 6.4 30.2 8.0 6.1 8.8 0.2 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 13.5 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9																									
10/22/20251300 3.3 4.3 4.2 3.9 5.7 3.6 4.1 13.2 9.7 12.1 16.9 12.2 7.9 18.5 11.6 25.7 6.4 10.1 12.6 8.4 23.0 11.4 9.8 13.2 10/22/20251500 3.4 4.3 4.0 5.9 3.7 4.3 13.4 8.0 12.0 17.5 10.0 48.1 16.7 15.6 22.0 6.4 10.0 12.7 8.4 24.0 11.4 10.1 13.4 10/22/20251500 3.4 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 52.4 16.3 19.7 21.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/20251500 3.3 4.2 4.4 3.9 6.2 3.8 4.9 13.5 6.8 10.5 13.9 9.2 41.7 13.6 25.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/20251500 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.7 12.2 8.2 25.9 11.3 11.0 13.5 10/22/20251500 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.6 8.5 12.1 8.3 13.9 11.4 25.2 15.0 6.3 9.5 12.3 8.2 25.9 11.3 11.0 13.5 10/22/2025100 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.4 11.2 11.9 13.6 10/22/2025200 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 6.1 3.6 6.0 8.0 8.7 8.1 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/2025200 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 6.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/2025200 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 6.5 7.2 7.2 8.7 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 5.7 7.2 8.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 17.8 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.7 2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0																									
10/22/202516:00 3.4 4.3 4.4 4.0 6.1 3.7 4.6 13.6 7.6 12.1 16.1 9.9 52.4 16.3 19.7 21.2 6.4 10.0 12.6 8.4 25.3 11.5 10.6 13.6 10/22/202516:00 3.4 4.1 4.5 3.9 6.3 3.8 4.9 13.5 6.8 10.5 13.9 9.2 41.7 13.6 22.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/202516:00 3.4 4.1 4.5 3.9 6.3 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 18.1 6.3 9.5 12.3 8.2 25.9 11.3 11.4 13.6 10/22/202518:00 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 18.1 6.3 9.5 12.3 8.2 25.9 11.3 11.4 13.6 10/22/202519:00 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 25.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/2025200 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 6.0 8.0 8.7 8.1 10.2 8.2 11.8 10.4 26.9 13.6 6.2 9.2 11.1 8.2 19.1 11.2 12.3 13.6 10/22/2025200 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 5.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/2025200 3.4 4.1 4.6 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.8 13.6 10/22/2025200 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 13.6 10/22/2025200 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 3.9 5.2 6.0 6.1 7.7 6.4 30.2 8.8 8.0 25.6 9.5 6.1 8.8 11.4 8.1 18.0 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 3.9 5.2 6.0 6.1 7.7 6.4 30.2 8.8 8.0 25.6 9.5 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.4 30.2 8.8 8.0 25.6 9.5 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.7 2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.7 2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.7 2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20252000 3.5 4.2 4.7 4.0 5.2 4.0 6.7 2 13.6 3.9 5.2 6.0 6.1 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 13.8 10.0 10.2 13.8 13.6 13.8 13.8 1	10/22/2025 13:00	3.3	4.3	4.2	3.9	5.7	3.6	4.1	13.2	9.7	12.1	16.9	12.2	27.9	18.5	11.6	25.7	6.4	10.1	12.6	8.4	23.0	11.4	9.8	13.2
10/22/202517:00 3.4 4.1 4.5 3.9 6.2 3.8 4.9 13.5 6.8 10.5 13.9 9.2 41.7 13.6 2.5 18.1 6.3 9.7 12.2 8.3 25.8 11.3 11.0 13.5 10/22/202517:00 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.6 8.5 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 25.9 11.3 11.0 13.5 10/22/202519:00 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.6 8.5 12.1 8.3 13.9 11.4 25.2 15.0 6.3 9.4 12.3 8.2 19.4 11.2 11.9 13.6 10/22/202519:00 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 26.9 13.6 6.2 9.2 12.1 8.2 19.4 11.2 11.9 13.6 10/22/202519:00 3.4 4.1 4.6 4.0 5.1 3.9 6.1 13.6 6.0 8.0 8.7 8.1 10.2 8.2 11.8 10.4 26.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/202519:00 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 5.7 7.2 8.7 7.6 9.2 9.0 26.6 11.6 6.2 9.1 11.9 8.1 18.7 11.1 12.8 13.6 10/22/20252000 3.4 4.1 4.6 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.4 8.1 17.8 10.9 15.2 13.6																									
10/22/202517:00 3.4 4.1 4.5 3.9 6.3 3.8 5.2 13.6 6.8 11.3 14.4 9.4 29.9 13.1 23.8 16.1 6.3 9.5 12.3 8.2 25.9 11.3 11.4 13.6 10/22/202518:00 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.6 8.5 12.1 8.3 13.9 11.4 25.2 15.0 6.3 9.4 12.3 8.2 19.4 11.2 11.9 13.6 10/22/202518:00 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.2 8.2 11.2 11.2 11.2 11.2 11.2																									
10/22/20251800 3.4 4.1 4.5 3.9 5.1 3.8 5.5 13.6 6.6 8.5 12.1 8.3 13.9 11.4 25.2 15.0 6.3 9.4 12.3 8.2 19.4 11.2 11.9 13.6 10/22/20251900 3.4 4.1 4.6 4.0 5.1 3.9 5.8 13.6 6.1 7.8 10.2 8.2 11.8 10.4 26.9 13.6 6.2 9.2 12.1 8.2 19.1 11.2 12.3 13.6 10/22/2025100 3.4 4.1 4.6 4.0 5.1 3.9 6.1 13.6 6.0 8.0 8.7 8.1 10.2 8.2 11.8 10.4 26.9 13.6 6.2 9.1 11.9 8.1 18.7 11.1 12.8 13.6 10/22/2025100 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 5.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.1 11.8 8.1 18.5 11.0 13.3 13.6 10/22/2025200 3.4 4.1 4.7 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 13.6 10/22/20252300 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 13.8 13.6 10/22/2025000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20250000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20250000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20250000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20250000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20250000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 10/22/20250000 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8																									
10/22/2052 2:00 3.4 4.1 4.6 4.0 5.1 3.9 6.1 13.6 6.0 8.0 8.7 8.1 10.3 9.6 26.6 11.6 6.2 9.1 11.9 8.1 18.7 11.1 12.8 13.6 10/22/2052 1:00 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 5.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/2052 2:00 3.4 4.1 4.7 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.3 13.6 10/22/2052 2:00 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.9 11.4 8.1 18.0 10.9 14.4 13.6 10/23/2052 0:00 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6	10/22/2025 18:00		4.1	4.5	3.9		3.8	5.5	13.6	6.6	8.5	12.1	8.3	13.9	11.4	25.2	15.0	6.3	9.4	12.3	8.2	19.4	11.2	11.9	13.6
10/22/20521:00 3.4 4.1 4.6 4.0 5.1 3.9 6.3 13.6 5.7 7.2 8.7 7.6 9.2 9.0 26.2 11.4 6.2 9.0 11.6 8.1 18.5 11.0 13.3 13.6 10/22/20522:00 3.4 4.1 4.7 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 13.6 11/20/202523:00 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.9 11.4 8.1 18.0 10.9 14.4 13.6 11/20/20250:00 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 19.9 15.2 13.6																									
10/22/2025 22:00 3.4 4.1 4.7 4.0 5.1 3.9 6.6 13.6 4.9 6.5 7.2 7.2 8.8 8.0 25.6 9.5 6.1 8.9 11.5 8.1 18.3 11.0 13.8 13.6 10/22/2025 23:00 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/23/2025 00:00 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6																									
10/22/2025 23:00 3.5 4.2 4.7 4.0 5.2 4.0 6.9 13.6 4.2 5.7 6.0 6.4 7.7 6.8 28.3 8.5 6.1 8.8 11.4 8.1 18.0 10.9 14.4 13.6 10/23/2025 00:00 3.5 4.2 4.7 4.0 5.2 4.0 7.2 13.6 3.9 5.2 6.0 6.1 7.0 6.4 30.2 8.0 6.1 8.8 11.3 8.1 17.8 10.9 15.2 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6															-										
10/23/2025 01:00 3.5 4.2 4.7 4.0 5.2 4.0 7.6 13.6 3.5 5.1 5.1 5.9 6.4 6.1 28.6 7.1 6.0 8.7 11.3 8.1 17.6 10.9 16.0 13.6																									
	10/23/2025 01:00	3.5	4.2	4.7	4.0	5.2	4.0	7.6	13.6	3.5	5.1	5.1	5.9	6.4	6.1	28.6	7.1	6.0	8.7	11.3	8.1	17.6	10.9	16.0	13.6

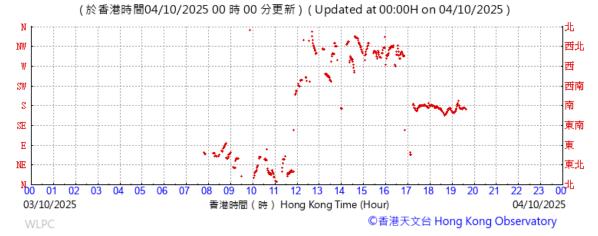
March Marc	Time	M03	M04	24-hou M06	r Rolling Av M09	erage FSP (μg/m³) M13	M14	M15a	M03	M04	1-h M06	our Average	RSP (µg/ı	n³) M13	M14	M15a	M03	M04	24-hour M06	Rolling Av	erage RSP ((μg/m³) M13	M14	M15a
Controlled Control C	10/23/2025 02:00			4.7								4.6	5.5	6.7											13.6
Marches Marc		-						_			-		-												13.7 13.7
March Marc																									13.7
Section	10/23/2025 06:00	3.8		5.1		-	4.4	9.1	14.2	8.5	10.0	13.1	-	17.1			16.9		8.8	11.4		17.7	11.2	19.0	14.2
Convenience																									14.8 15.5
March Marc																									16.3
March Marc																									17.1
Section						-													-				-		17.8 18.9
March Marc																									19.7
Section 1985 1985																									20.7
Section																									21.8 23.3
Teach Service Column Col					-						-											-			25
Decomposition 19					-													-							26.5
March Marc																									27.6 28.4
March Marc				9.3		10.0	8.7							27.8	25.3		32.5								29.3
Section Sect																									30.2 31.1
1.00 1.00								-																	31.1
1941-1968 1961 19	10/24/2025 01:00	8.5	10.5		9.4	11.3												13.7							32.8
March 10		-																							33.6 34.4
1																									35.2
Section																									35.9
14																									36.3 36.5
Procession No. 14, 14, 15, 15, 12, 15, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 12, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11																									36.6
						-																			36.6
1999 1999																									36.6 36.5
Second S	10/24/2025 12:00		11.4	11.1	10.0	12.0	10.6	12.3	36.1	18.1	24.5	36.4	22.6	34.3	29.8	19.0	38.6	15.3	21.7	29.4	19.8	28.9	27.0	25.4	36.1
\$\frac{1}{10000000000000000000000000000000000																									35.7 35.3
1.000000000000000000000000000000000000						-																			35.3 35
Montemore March	10/24/2025 16:00	9.4	11.4	11.1	10.0	11.9	10.4	12.4	34.5	20.1	28.7	37.3	26.8	40.4	34.5	24.2	41.9	15.6	21.7	29.1	19.9	29.0	26.5	25.5	34.5
100000000000 9																									34.2 34
																									34.3
1906/0005/2009 113 123 273 118 138 115 128 186 287 281 181 282 287 281 281 282																									34.9
100-000000000 11																									35.9 36.9
Page																									37.6
Decision 12																									38.4
Decision 12 146 332 129 151 120 402 136 233 232 188 256 224 234 333 386 281 389 346 305 282 1305 2305																									39.2 39.7
Decision 12 147 132 131 152 156 146																									40
																									40.2
												-													40.2 40.2
1005/0005 100 124 103 134 132 154 127 116 405 186 250 300 215 347 300 266 383 389 266 343 263 348 311 252 250 2005/0005 210 113 113 114 115 124 115 136 141		12.2	14.7				12.6	11.7		12.6		30.4		24.4	23.4	25.0	29.8	19.6	26.3					25.3	40.2
																									40.4 40.5
1007020031200 125 136 134 155 130 131 130 131 130 131 130 131 130 131 130 131 130 131 130 131																									40.6
																									40.4
100750003 1400 12.5 15.3 13.6 13.4 13.6 13.1 12.0 39.2 13.6 39.2 23.4 39.5 39.5 23.5																									40.3 39.9
100780003 1800 124 153 138 133 135 131 122 389 143 282 364 224 324 325 329 329 341 227 341 223 329 291 10078003 1800 121 151 131 132 130 112 380 148 271 362 246 333 329 392 392 394 392 3																									39.7
1095/2005 1900 12,1 13,0 13,2 13,8 13,2 13,6 13,1 13,2 13,6 13,0 12,4 38,1 14,8 27,1 35,0 25,5 33,0 32,9 39,7 19,4 27,0 34,1 25,2 34,2 32,1 26,2 1095/2005 1900 11,8 14,9 13,5 12,9 14,9 12,9 12,5 37,8 17,6 27,1 35,0 25,6 30,0 32,5 28,6 33,1 18,9 28,7 30,0 24,8 33,2 12,8 28,1 1095/2005 2000 11,8 14,9 13,5 12,9 14,9 12,9 12,5 37,8 17,6 27,1 35,0 25,6 38,3 18,9 28,7 30,6 24,8 33,2 32,0 28,6 33,1 33,0 13,1 33,0 13,1 34,0 34,0						-																			39.3
1075/9025 5900 112 140 150 136 130 151 130 125 378 176 271 358 226 286 309 325 286 383 189 287 340 248 335 320 262 335 1075/9025 5900 118 140 135 122 143 126 126 384 162 260 311 277 287 287 288 331 177 258 331 236 235 318 288																									38.9 38.6
1095/20028 2000	10/25/2025 18:00		15.1	13.7		15.2			38.1					30.9	32.5				26.8	34.0				26.2	38.1
100%20025200 1012 141 132 122 143 126 126 384 182 280 311 286 386 380																									37.8 37.3
1005/870252300 10.6 13.5 12.8 11.6 13.4 12.1 12.7 35.1 16.9 22.6 28.9 21.9 22.5 28.0 28.4 34.1 17.1 25.0 22.1 27.9 31.2 30.5 28.0 28.0 1005/870250100 10.3 13.1 12.5 11.3 11.9 11.8 13.1 37.7 25.2 36.3 23.7 28.5 28.0 28.4 31.9 27.2 30.7 30.4 28.2 28.5 1005/870250200 10.3 13.1 12.5 11.3 11.9 11.8 13.1 30.0 11.8 13.3 33.9 15.7 21.7 24.5 20.6 20.1 22.5 33.1 10.5 24.5 20.0 22.1 30.3 30.2 28.5 10.05/870250300 10.3 13.2 12.5 11.3 13.0 11.8 13.3 33.9 15.7 21.7 24.5 20.6 20.6 26.1 29.5 31.0 16.5 24.5 32.0 22.1 30.3 30.2 28.5 10.05/870250500 10.4 13.3 12.6 11.4 13.1 11.9 13.6 34.1 15.7 21.5 21.8 20.3 20.5 22.7 24.5 20.6 20.8 22.7 24.5 20.6 20.8 22.7 24.5 20.6 22.8																									36.4
1006/800250100 10.3 13.1 12.5 11.3 13.0 11.8 12.9 11.8 13.1 34.0 16.8 23.4 26.8 23.2 24.6 27.4 30.5 23.1 33.3 18.8 24.6 32.1 22.2 30.4 30.2 28.5 10.068/00250200 10.2 13.1 12.5 11.3 13.0 11.8 13.1 34.0 16.8 23.4 26.8 21.8 28.9 28.2 20.0 33.0 16.5 24.5 32.0 22.1 30.3 30.2 28.5 10.068/00250500 10.3 13.2 12.5 11.3 13.0 11.8 13.3 31.5 12.1 23.8 20.7 20.8 20.8 22.8 20.7 20.8 20.																									35.6
10/08/09/08/09/09 10.3 13.1 12.5 11.3 12.0 11.8 12.9 34.3 17.7 25.2 38.3 23.7 28.5 23.1 31.9 37.8 16.6 24.6 32.1 22.2 30.4 30.2 26.5 10/08/09/08/09/09/09/10.3 13.2 12.5 11.3 13.0 11.8 13.3 33.9 15.7 21.7 24.5 20.6 26.6 26.1 25.5 31.0 16.5 24.5 32.0 22.1 30.3 30.2 26.5 10/08/09/08/09/09/10.3 13.2 12.5 11.3 13.0 11.8 13.3 33.9 15.7 21.7 24.5 20.6 26.6 26.1 25.5 31.0 16.5 24.5 32.0 22.1 30.3 30.2 26.7 10/08/09/08/09/09/10.3 13.2 12.5 11.3 13.0 11.8 13.3 33.9 15.7 21.7 24.5 20.6 26.6 26.1 25.5 31.0 16.5 24.5 32.0 22.1 30.3 30.2 26.7 10/08/09/08/09/09/10.3 13.2 12.6 11.4 13.1 11.9 13.6 34.1 15.7 21.5 20.8 20.8 27.7 26.0 30.8 16.6 24.6 32.0 22.1 30.3 30.2 26.7 10/08/09/08/09/09/10.3 13.4 12.5 11.5 13.2 12.1 13.8 34.2 15.0 21.3 26.8 20.3 27.7 26.0 30.8 16.5 24.5 32.0 22.1 30.8 30.3 22.8 11.0 10/08/09/08/09/09/10.1 13.4 12.5 11.5 13.2 12.1 13.8 34.2 15.0 21.3 26.8 20.3 27.7 26.0 30.8 31.5 16.7 24.8 32.2 22.4 30.6 30.5 27.2 10/08/09/08/09/09/10.1 13.4 12.1 11.5 13.2 12.1 13.8 34.2 15.0 21.3 26.8 20.3 22.9 31.1 10.08/09/09/09/09/10.1 13.8 13.8 12.8 11.6 13.4 12.1 13.9 34.4 15.9 23.0 26.6 21.4 23.3 29.9 25.2 33.8 17.0 25.1 32.3 22.8 31.1 30.9 27.4 10/08/09/08/09/09/09/10.1 13.8 13.0 11.8 13.5 12.3 14.1 34.5 24.6 27.2 32.0 24.4 36.1 31.5 24. 254. 254. 39.7 17.3 25.3 31.8 23.0 31.2 39.9 27.5 10/08/09/08/09/09/10.1 13.8 13.3 11.9 13.6 12.3 14.1 34.5 21.7 28.4 34.6 24.5 24.2 24.2 24.2 34.3 39.8 17.3 25.3 31.8 23.0 31.2 39.9 27.5 10/08/09/09/10.0 10.8 13.8 13.2 12.0 13.7 12.4 14.2 34.8 22.1 30.1 40.8 27.0 39.2 36.7 24.8 40.9 17.4 254. 32.1 32.3 31.8 23.0 31.2 27.8 10/08/09/09/10.0 10.8 13.8 13.2 12.0 13.8 12.4 14.4 34.8 22.1 30.1 40.8 27.0 39.2 36.7 24.8 40.9 17.4 254. 32.1 22.2 31.4 31.1 27.8 110/08/09/09/10.0 10.8 13.8 13.2 12.0 13.8 12.4 14.4 34.8 22.1 30.1 40.8 27.0 39.2 35.7 30.4 31.3 17.2 25.7 32.2 23.3 31.5 11.2 27.8 110/08/09/09/10.0 10.8 13.8 13.4 12.2 14.0 13.5 12.2 14.1 12.5 15.3 35.0 17.9 28.5 34.9 28.0 39.9 39.5 36.7 30.4 30.1 17.6 25.6 32.3 32.4 31.3 11.2 27.6 10.0 10.0 10.0 13.9 13.8 13.4 12.2 14.0 13.5 12.2 14.																									35.1 34.6
100/80/20090000 10.3 13.2 12.5 11.3 13.0 11.8 13.3 33.9 15.7 21.7 24.5 20.6 26.6 26.1 29.5 31.0 16.5 24.5 32.0 22.1 30.3 30.2 28.7 100/80/2009000 10.4 13.3 12.6 11.4 13.1 11.9 13.6 34.1 15.7 21.5 23.8 20.3 27.7 28.0 30.8 31.5 16.7 24.8 32.2 22.4 30.6 30.5 27.2 100/80/2009000 10.6 13.5 12.8 11.6 13.4 12.1 13.9 34.4 15.9 22.1 23.8 20.3 27.7 28.0 30.8 31.5 16.7 24.8 32.5 22.6 30.9 30.7 27.4 100/80/2009000 10.6 13.5 12.8 11.6 13.4 12.1 13.9 34.4 15.9 23.0 26.6 21.4 29.3 29.0 25.2 23.8 17.0 25.1 32.3 22.8 31.1 30.8 27.4 100/80/2009000 10.7 13.6 13.0 11.8 13.5 12.3 14.1 34.5 24.6 27.2 32.0 24.4 36.1 31.5 25.4 30.7 30.7 32.3 32.8 23.0 32.9 27.5 100/80/2009000 10.8 13.7 13.1 11.9 13.6 12.2 14.1 34.5 24.6 27.2 32.0 24.4 36.1 31.5 25.4 30.7 17.3 25.3 31.8 23.0 31.2 30.9 27.5 100/80/2009100 10.8 13.8 13.2 12.0 13.7 12.4 14.2 34.8 22.1 30.1 30.7 25.8 30.7 24.8 40.9 17.4 25.4 32.1 32.1 32.3 32.8																									34.3
10/28/2025/000 10.3 13.2 12.5 11.3 13.0 11.9 13.4 33.9 15.9 21.1 23.8 20.7 25.9 32.0 30.8 16.6 24.6 32.0 22.2 30.4 30.3 25.9 10/28/2025/000 10.5 13.4 12.7 11.5 13.2 12.1 13.6 34.1 15.7 21.5 26.0 20.6 27.6 25.2 27.6 29.4 16.9 25.0 32.5 22.6 30.9 30.7 27.4 10/28/2025/000 10.6 13.5 12.8 11.6 13.4 12.1 13.8 34.4 15.9 23.0 22.9 31.4 23.2 22.2 31.1 30.8 27.4 10/28/2025/000 10.6 13.6 12.9 11.7 13.4 12.2 14.0 34.4 17.5 24.7 29.4 22.9 31.4 29.4 25.4 37.0 17.0 25.2 32.0 22.9 31.1 30.9 27.5 10/28/2025/000 10.6 13.6 12.9 11.7 13.4 12.2 14.0 34.4 17.5 24.7 29.4 22.9 31.4 29.4 25.4 37.0 17.0 25.2 32.0 32.8 31.1 30.9 27.5 10/28/2025/000 10.8 13.7 13.1 11.9 13.6 12.9 14.1 34.5 21.7 28.4 34.6 26.0 37.3 33.4 22.4 39.8 17.3 25.3 31.8 23.3 31.2 30.9 27.5 10/28/2025/100 10.8 13.7 13.4 11.9 13.6 12.9 14.1 34.5 21.7 28.4 34.6 26.0 37.3 33.4 24.2 39.8 17.3 25.3 31.8 23.3 31.2 30.9 27.5 10/28/2025/100 10.8 13.8 12.4 14.2 34.8 22.1 30.1 30.8 27.2 24.8 40.9 17.4 25.4 39.5 37.5 25.5 32.2 33.3 31.2 30.9 27.5 10/28/2025/100 10.9 13.8 13.3 12.1 14.7 34.9 20.4 23.6 38.9 38.2 26.8 39.9 38.2 26.9 36.4 17.5 25.5 32.2 23.3 31.5 31.1 27.8 10/28/2025/100 11.0 14.0 13.4 12.1 13.4 12.5 13.5 30.0 15.6 28.8 32.2 24.8 30.8 30.8 31.3 37.7 26.5 32.2 23.3 31.5 31.1 27.8 10/28/2025/100 11.0 14.0 13.5 12.4 14.2 12.5 15.6 38.1 17.1 31.9 34.7 36.5 35.8 38.8 38.8 31.3 37.7 37.8 38.8 38.8 38.3 38																									34
10/28/2025/05/06/0 10.4 13.3 12.6 11.4 13.1 11.9 13.6 34.1 15.7 21.5 23.8 20.3 27.7 25.0 30.8 31.5 16.7 24.8 32.2 22.4 30.6 30.5 27.2																									33.9 33.9
10/26/2025/07/00 10.6 13.5 12.8 11.6 13.4 12.1 13.9 34.4 17.5 23.0 26.6 21.4 29.3 29.9 25.2 33.8 17.0 25.1 32.3 22.8 31.1 30.8 27.4	10/26/2025 05:00		13.3	12.6		13.1	11.9	13.6	34.1		21.5	23.8	20.3	27.7	26.0	30.8	31.5	16.7		32.2	22.4	30.6	30.5	27.2	34.1
10/28/2025 08.00 10.6 13.6 12.9 11.7 13.4 12.2 14.0 34.4 17.5 24.7 29.4 29.8 31.4 29.4 25.4 37.0 17.0 25.2 32.0 22.9 31.1 30.9 27.5																									34.2 34.4
10/28/2025 11:00 10.8 13.7 13.1 11.9 13.6 12.3 14.1 34.5 21.7 28.4 34.6 26.0 37.3 33.4 24.2 38.8 17.3 25.3 31.8 23.1 31.2 30.9 27.5																								27.4	34.4
10/28/2025 1:00 10.8 13.8 13.2 12.0 13.7 12.4 14.2 34.8 22.1 30.1 40.8 27.0 39.2 38.7 24.8 40.9 17.4 25.4 32.1 32.2 31.4 31.1 27.6 10/28/2025 1:300 11.0 13.9 13.4 12.1 13.9 12.5 14.7 34.9 20.4 29.5 34.9 26.0 38.5 35.7 30.4 32.0 17.6 25.6 32.3 23.4 31.6 31.1 27.8 10/28/2025 1:300 11.0 14.0 13.4 12.2 14.1 12.5 14.9 35.0 19.6 28.8 35.2 26.8 35.7 34.8 30.8 31.3 17.7 25.7 32.2 23.5 31.7 31.0 28.8 10/28/2025 1:500 11.1 14.0 13.5 12.2 14.1 12.5 15.3 35.0 17.8 28.5 34.5 23.7 39.5 35.8 32.2 31.8 17.7 25.7 32.2 23.5 31.7 31.0 28.8 10/28/2025 1:500 11.2 14.1 13.5 12.4 14.2 12.6 15.6 35.1 17.1 31.9 34.7 26.7 35.4 34.1 39.1 33.7 17.8 25.9 32.1 23.7 31.8 31.0 29.3 10/28/2025 1:500 11.6 15.2 13.9 12.9 15.1 12.9 15.1 35.8 23.1 39.2 45.1 30.9 42.6 40.9 43.3 37.6 41.0 18.0 26.4 32.1 24.1 32.1 31.5 29.5 32.2 33.8 33.2 33.8 33.2 33.8 33.2 33.8 33.2 33.8 33.2 33.8 33.2 33.8 33.8 33.2 33.8																									34.5
10/26/2025 13:00 10																									34.5 34.8
10/26/202514:00 11.0 14.0 13.4 12.2 14.0 12.5 14.9 35.0 19.6 28.8 35.2 26.6 37.5 34.8 30.8 31.3 17.7 25.7 32.4 23.5 31.7 31.1 28.5 10/26/202515:00 11.1 14.0 13.5 12.2 14.1 12.5 15.3 35.0 17.9 28.5 34.5 23.7 35.9 35.8 32.2 31.8 17.7 25.7 32.4 23.5 31.7 31.0 28.8 10/26/202515:00 11.2 14.1 13.5 12.4 14.2 12.6 15.6 35.1 17.1 31.9 34.7 26.7 35.4 34.1 39.1 33.7 17.8 25.9 32.1 23.7 31.8 31.0 28.8 10/26/202515:00 11.3 14.6 13.5 12.6 14.5 12.7 15.8 35.1 18.9 38.2 46.1 33.9 40.0 46.3 37.6 41.0 18.0 26.4 32.1 24.1 32.1 31.5 29.5 10/26/202515:00 11.6 15.2 13.9 12.9 15.1 12.9 16.1 35.8 23.1 42.6 56.0 34.5 53.5 44.9 39.6 53.8 18.3 27.1 32.9 24.6 33.1 32.0 30.0 10/26/202515:00 11.8 15.6 14.1 13.0 15.4 14.1 13.4 16.4 36.2 23.3 37.2 47.4 31.7 40.1 39.0 37.0 46.6 18.5 27.5 33.4 24.8 33.5 32.3 30.3 10/26/202515:00 12.0 15.9 14.3 13.3 15.7 13.2 16.7 36.3 20.6 32.8 42.6 32.2 37.7 33.3 36. 18.8 27.8 33.9 25.2 33.9 32.7 30.7 10/26/20251:00 12.1 16.1 14.5 13.4 15.9 13.4 17.0 36.6 19.6 31.4 41.4 31.8 36.9 39.9 39.1 40.3 18.9 28.1 34.8 25.8 34.5 33.4 31.7 10/26/20252:00 12.3 16.3 14.7 13.6 16.1 13.5 17.4 36.8 22.6 31.1 36.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.8 34.5 33.4 31.7 10/26/20250:00 12.4 16.5 14.9 13.8 16.3 13.7 17.8 37.1 19.2 26.4 32.6 25.8 35.7 33.7 47.3 38.7 19.2 28.4 35.0 26.0 34.8 33.6 32.5 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.8 25.9 34.9 33.6 33.6 32.5 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.5 26.0 35.1 33.7 33.4 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 17.5 24.2 27.9 24.2 29.0	10/26/2025 12:00	10.9	13.8	13.3	12.0	13.8	12.4	14.4	34.8	22.0	29.8	37.9	25.6	38.9	36.2	26.9	36.4	17.5	25.5	32.2	23.3	31.5	31.1	27.8	34.8
10/26/202515:00 11.2 14.1 13.5 12.4 14.2 12.5 15.3 35.0 17.9 28.5 34.5 23.7 35.9 35.8 32.2 31.8 17.7 25.7 32.2 23.5 31.7 31.0 28.8 10/26/202515:00 11.2 14.1 13.5 12.4 14.2 12.6 15.6 35.1 17.1 31.9 34.7 26.7 35.4 34.1 39.1 37.7 17.8 25.9 32.1 23.7 31.8 31.0 29.3 10/26/202515:00 11.3 14.6 13.5 12.6 14.5 12.7 15.8 35.1 18.9 38.2 46.1 33.9 40.0 46.3 37.6 41.0 18.0 26.4 32.1 24.1 32.1 31.5 29.5 10/26/202515:00 11.6 15.2 13.9 12.9 15.1 12.9 16.1 35.8 23.1 42.6 56.0 34.5 53.5 44.9 39.6 53.8 18.3 27.1 32.9 24.6 33.1 32.0 30.0 10/26/202515:00 11.8 15.6 14.1 13.0 15.4 13.1 16.4 36.2 23.3 37.2 47.4 31.7 40.1 39.0 37.0 46.6 18.5 27.5 33.4 24.8 33.5 32.3 30.3 10/26/202520:00 12.0 15.9 14.3 13.3 15.7 13.2 16.7 36.3 20.6 32.8 42.6 32.2 37.7 39.3 37.3 39.6 18.8 27.8 33.9 25.2 33.9 32.7 30.7 10/26/202520:00 12.1 16.1 14.5 13.4 15.9 13.4 17.0 36.6 19.6 31.4 14.4 31.8 36.9 39.9 39.1 40.3 18.9 28.1 34.3 25.5 34.2 33.1 31.1 10/26/202520:00 12.2 16.3 14.7 13.6 16.1 13.5 17.4 36.6 19.6 31.4 14.4 31.8 36.9 39.9 39.1 40.3 18.9 28.1 34.3 34.8 25.5 34.2 33.1 31.1 10/26/202520:00 12.4 16.4 14.8 13.8 16.4 13.8 18.1 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.8 25.9 34.9 33.6 33.0 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.8 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.5 26.0 35.1 33.7 33.0 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.8 37.4 16.6 22.5 26.7 22.6 30.8 28.3 31.9 35.0 19.2 28.3 34.6 26.0 35.1 33.7 33.0 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.0 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.0 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.0 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.0 10/27/20250:00 12.5 16.6 15.1 14.9 17.9 14.9 19.8 38.0 18.6 17.5 14.0 16.7 14.1 18																									34.9 35
10/26/2025 16:00 11.2 14.1 13.5 12.4 14.2 12.6 15.6 35.1 17.1 31.9 34.7 26.7 35.4 34.1 39.1 33.7 17.8 25.9 32.1 23.7 31.8 31.0 29.3 10/26/2025 18:00 11.3 14.6 13.5 12.6 14.5 12.7 15.8 35.1 18.9 38.2 46.1 33.9 40.0 46.3 37.6 41.0 18.0 26.4 32.1 24.1 32.1 31.5 29.5 10/26/2025 18:00 11.6 15.2 13.9 12.9 15.1 12.9 16.1 35.8 23.1 42.6 56.0 34.5 53.5 44.9 36.6 53.8 18.3 27.1 32.9 24.6 33.1 32.0 30.0 10/26/2025 19:00 11.8 15.6 14.1 13.0 15.4 13.1 16.4 36.2 23.3 37.2 47.4 31.7 40.1 39.0 37.0 46.6 18.5 27.5 33.4 24.8 33.5 32.3 30.3 10/26/2025 19:00 12.0 15.9 14.3 13.3 15.7 13.2 16.7 36.3 20.6 32.8 42.6 32.2 37.7 39.3 37.3 39.6 18.8 27.8 33.9 25.2 33.9 32.7 30.7 10/26/2025 21:00 12.1 16.1 14.5 13.4 15.9 13.4 17.0 36.6 19.6 31.4 41.4 31.8 38.9 39.9 39.1 40.3 18.9 28.1 34.3 25.5 34.2 31.3 31.7 10/26/2025 21:00 12.1 16.1 44.8 13.8 16.3 13.7 17.8 36.8 22.6 31.1 39.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.8 34.5 33.4 31.7 10/26/2025 21:00 12.3 16.3 14.7 13.6 16.1 13.5 17.4 36.8 22.6 31.1 39.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.8 34.5 33.4 31.7 10/26/2025 21:00 12.4 16.5 14.9 13.8 16.3 13.7 17.8 37.1 19.2 26.4 32.6 25.8 35.7 33.7 47.3 39.7 19.2 28.4 35.0 26.0 34.8 33.6 33.0 10/27/2025 01:00 12.4 16.5 14.9 13.8 16.4 13.8 18.1 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.8 25.9 34.9 33.6 33.0 10/27/2025 01:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/2025 01:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 25.2 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/2025 01:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 25.2 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/2025 01:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 25.2 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/2025 01:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 25.2 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/2025 01:00 12.5 16.6 15.1 13.9 16.6 14.0																									35
10/26/202519:00 11.8 15.6 14.1 13.0 15.4 13.1 16.4 36.2 23.3 37.2 47.4 31.7 40.1 39.0 37.0 46.6 18.5 27.5 33.4 24.8 33.5 32.3 30.3 10/26/202520:00 12.0 15.9 14.3 13.3 15.7 13.2 16.7 36.3 20.6 32.8 42.6 32.2 37.7 39.3 37.3 39.6 18.8 27.5 33.4 24.8 33.5 32.3 30.3 10/26/202520:00 12.0 12.1 16.1 14.5 13.4 15.9 13.4 17.0 36.6 19.6 31.4 41.4 31.8 36.9 39.9 39.1 40.3 18.9 28.1 34.3 25.5 34.2 33.1 11.1 10/26/202520:00 12.3 16.3 14.7 13.6 16.1 13.5 17.4 36.8 22.6 31.1 39.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.5 34.2 33.1 31.7 10/26/20253300 12.4 16.4 14.8 13.8 16.3 13.7 17.8 37.1 19.2 26.4 32.6 25.8 35.7 33.7 47.3 39.7 19.2 28.4 35.0 26.0 34.8 33.6 32.5 10/27/20250:00 12.4 16.5 15.0 13.9 16.5 13.9 18.6 13.8 18.1 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.5 26.0 35.0 33.0 10/27/20250:00 12.4 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.5 26.0 35.1 33.7 33.2 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.3 25.5 31.2 29.2 23.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/20250:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.3 25.5 31.2 29.2 33.4 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.8 10/27/20250:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.0 27.7 37.5 26.0 40	10/26/2025 16:00	11.2	14.1	13.5	12.4	14.2	12.6	15.6	35.1	17.1	31.9	34.7	26.7	35.4	34.1	39.1	33.7	17.8	25.9	32.1	23.7	31.8	31.0	29.3	35.1
10/26/202519:00 11.8 15.6 14.1 13.0 15.4 13.1 16.4 36.2 23.3 37.2 47.4 31.7 40.1 39.0 37.0 46.6 18.5 27.5 33.4 24.8 33.5 32.3 30.3 10/26/20252000 12.0 15.9 15.0 15.9 13.4 15.9 13.4 17.0 36.6 19.6 31.4 41.4 31.8 39.8 39.9 39.1 40.3 18.9 28.1 34.3 25.2 33.9 32.7 30.7 10/26/20252000 12.1 16.1 44.5 13.4 15.9 13.4 17.0 36.6 19.6 31.4 41.4 31.8 39.8 39.9 39.1 40.3 18.9 28.1 34.3 25.5 34.2 33.1 31.7 10/26/20252200 12.3 16.3 14.7 13.6 16.1 13.5 17.4 36.8 22.6 31.1 39.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.8 34.5 33.4 32.5 10/27/20250000 12.4 16.6 14.8 13.8 16.3 13.7 17.8 37.1 19.2 26.4 32.6 25.8 35.7 33.7 47.3 39.7 19.2 28.4 35.0 26.0 34.8 33.6 32.5 10/27/20250000 12.4 16.5 14.9 13.8 16.4 13.8 18.1 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.8 25.8 34.9 33.6 33.0 10/27/20250000 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.8 25.0 26.0 33.4 33.6 33.0 10/27/20250000 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 28.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 26.2 30.8 28.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 22.2 23.7 30.8 28.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 27.9 22.2 32.7 30.8 28.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.1 13.9 16.4 14.0 18.6 37.2 16.9 24.2 27.9 22.2 32.7 30.8 28.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.1 13.9 16.4 14.0 18.6 37.2 16.9 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/20250000 12.5 16.6 15.1 13.9 14.4 19.2 38.0 18.6 19.5 28.7 35.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 33.8 33.5 10/27/20250000 12.5 16.6 15.1 14.9 17.5 14.6 19.5 38.0 19.6 25.1 31.4 25.7																									35.1 35.8
10/26/20252100 12.1 16.1 14.5 13.4 15.9 13.4 17.0 36.6 19.6 31.4 41.4 31.8 36.9 39.9 39.1 40.3 18.9 28.1 34.3 25.5 34.2 33.1 31.1 10/26/20252200 12.3 16.3 14.7 13.6 16.1 13.5 17.4 38.6 22.6 31.1 39.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.8 34.5 33.4 31.7 10/26/20253200 12.4 16.4 14.8 13.8 16.3 13.7 17.8 37.1 19.2 26.4 32.6 25.8 35.7 33.7 47.3 39.7 19.2 28.4 35.0 26.0 34.8 33.6 32.5 10/27/20250000 12.4 16.5 14.9 13.8 16.4 13.8 16.1 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.5 26.0 35.0 33.7 33.2 10/27/20250000 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 38.8 37.7 19.2 28.3 34.5 26.0 35.0 33.7 33.2 10/27/20250000 12.5 16.6 15.1 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.5 26.0 35.0 33.7 33.2 10/27/20250000 12.5 16.6 15.1 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.5 26.0 35.0 33.7 33.2 10/27/20250000 12.5 16.6 15.1 13.9 16.5 13.9 18.3 37.4 16.6 22.5 26.7 22.6 30.8 28.3 31.9 35.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250000 12.5 16.6 15.3 14.2 16.9 14.2 19.0 37.6 17.5 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/20250000 12.5 16.8 15.3 14.2 16.9 14.2 19.0 37.6 17.5 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/20250000 12.5 17.0 15.5 14.3 17.1 14.4 19.2 38.0 19.6 25.1 31.4 25.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.6 10/27/20250000 13.1 17.3 15.8 14.6 17.5 14.6 19.5 38.7 26.0 27.7 37.5 28.0 40.5 34.0 34.7 45.7 19.9 28.9 35.6 26.8 36.3 34.6 34.6 34.0 33.5 10/27/20250000 13.1 17.3 15.8 14.6 17.5 14.9 19.8 39.3 26.9 30.3 36.6 32.3 44.5 50.0 44.5 39.2 38.6 19.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/20250000 13.1 17.3 15.8 14.6 17.5 14.9 19.8 39.3 26.9 30.3 36.6 32.3 44.5 50.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/20250000 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 36.6 32.3 44.5 50.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/20250000 13.4 18.8 18.0 16.4 15.3 18.3 15.2 20.1 3																									36.2
10/26/2025 22:00 12.3 16.3 14.7 13.6 16.1 13.5 17.4 36.8 22.6 31.1 39.6 30.5 37.2 37.9 42.9 42.7 19.1 28.3 34.8 25.8 34.5 33.4 31.7 10/26/2025 32:00 12.4 16.4 14.8 13.8 16.3 13.7 17.8 37.1 19.2 26.4 32.6 25.8 35.7 33.7 47.3 39.7 19.2 28.4 35.0 26.0 34.8 33.6 32.5 10/27/2025 01:00 12.4 16.5 14.9 13.8 16.4 13.8 18.1 37.1 17.0 24.2 27.9 42.2 29.9 30.1 45.0 36.4 19.2 28.3 34.8 25.8 34.9 33.6 33.0 10/27/2025 01:00 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.5 26.0 35.0 33.7 33.2 10/27/2025 01:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/2025 01:00 12.5 16.7 15.2 14.0 16.7 14.1 18.8 37.4 16.6 25.2 26.7 22.6 30.8 28.3 31.9 35.0 19.2 28.4 34.7 26.1 35.2 33.8 33.5 10/27/2025 01:00 12.6 16.8 15.3 14.2 16.9 14.2 19.0 37.6 17.5 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.6 10/27/2025 01:00 12.8 17.0 15.5 14.3 17.1 14.4 19.2 38.0 19.6 25.1 31.4 25.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.6 10/27/2025 07:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.6 10/27/2025 07:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.6 10/27/2025 08:00 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/2025 08:00 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/2025 08:00 14.8 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 44.4 56.8 45.5 31.2 69.5 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/2025 08:00 14.8 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 44.4 56.8 45.5 31.2 69.5 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/2025 08:00 14.8 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 34.4 44.5 56.8 45.5 31.2 69.5 21.3 30.1 37.8 28.4 37.9 38.8 36.2 34.9 35.2 34.9 10/27/2025 08:00 14.8 18.8 17.1 16.1 19.3 15.8 20.7	10/26/2025 20:00	12.0	15.9	14.3	13.3	15.7	13.2	16.7	36.3	20.6	32.8		32.2	37.7				18.8	27.8	33.9			32.7	30.7	36.3
10/26/20253200 12.4 16.4 14.8 13.8 16.3 13.7 17.8 37.1 19.2 26.4 22.6 25.8 35.7 33.7 47.3 39.7 19.2 28.4 35.0 26.0 34.8 33.6 32.5 10/27/20250000 12.4 16.5 14.9 13.8 16.4 13.8 16.1 37.1 17.0 24.2 27.9 24.2 29.0 30.1 45.0 36.4 19.2 28.3 34.8 25.9 34.9 33.6 33.0 10/27/20250100 12.4 16.5 15.0 13.9 16.5 13.9 18.3 37.1 18.5 24.7 29.5 24.1 31.0 30.9 36.8 37.7 19.2 28.3 34.5 26.0 35.0 33.7 33.2 10/27/20250200 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 29.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/20250300 12.5 16.7 15.2 14.0 16.7 14.1 18.8 37.4 16.6 22.5 26.7 22.6 30.8 28.3 31.9 35.0 19.2 28.4 34.7 26.1 35.2 33.8 33.5 10/27/202505000 12.6 16.8 15.3 14.2 16.9 14.2 19.0 37.6 17.5 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/202505000 12.8 17.0 15.5 14.3 17.1 14.4 19.2 38.0 19.6 25.1 31.4 25.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.6 10/27/202505000 13.1 17.3 15.8 14.6 17.5 14.6 17.5 14.6 19.5 38.7 26.0 27.7 37.5 28.0 40.5 34.0 34.7 49.1 20.4 29.2 36.2 27.7 36.8 34.0 10/27/202505000 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 36.6 32.3 42.5 37.0 33.0 49.1 20.4 29.2 36.2 27.7 36.8 34.0 10/27/202505000 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 38.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/202505000 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 38.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/202505000 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 38.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/202505000 14.2 18.4 16.7 15.7 18.7 15.5 20.4 41.0 35.0 39.1 57.1 40.7 50.0 50.2 33.0 65.9 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/202505000 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 45.5 31.2 66.5 21.3 30.1 37.8 28.4 37.9 36.2 38.2 35.2 34.2 34.2 34.2 35.0 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2																									36.6 36.8
10/27/2025 01:00																									37.1
10/27/202503:00 12.5 16.6 15.1 13.9 16.6 14.0 18.6 37.2 16.9 24.2 28.2 23.7 30.8 28.8 34.1 37.0 19.2 28.3 34.6 26.0 35.1 33.7 33.4 10/27/202503:00 12.5 16.7 15.2 14.0 16.7 14.1 18.8 37.4 16.6 22.5 26.7 22.6 30.8 28.3 31.9 35.0 19.2 28.4 34.7 26.1 35.2 33.8 33.5 10/27/202505:00 12.6 16.8 15.3 14.2 16.9 14.2 19.0 37.6 17.5 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/202505:00 12.8 17.0 15.5 14.3 17.1 14.4 19.2 38.0 19.6 25.1 31.4 25.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.6 10/27/202505:00 13.1 17.3 15.8 14.6 17.5 14.6 19.5 38.7 26.0 27.7 37.5 28.0 40.5 34.0 34.7 45.7 19.9 28.9 35.6 26.8 36.3 34.6 33.9 10/27/202505:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.3 10/27/202505:00 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 38.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/202505:00 14.2 18.4 16.7 15.7 18.7 15.5 20.4 41.0 35.0 39.1 57.1 40.7 50.0 50.2 33.0 65.9 21.3 30.1 37.8 28.4 37.9 38.2 36.8 35.2 10/27/202505:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 45.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2 10/27/202505:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 45.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2																									37.1
10/27/202503:00 12.5 16.7 15.2 14.0 16.7 14.1 18.8 37.4 16.6 22.5 26.7 22.6 30.8 28.3 31.9 35.0 19.2 28.4 34.7 26.1 35.2 33.8 33.5 10/27/202505:00 12.6 16.8 15.3 14.2 16.9 14.2 19.0 37.6 17.5 24.2 27.3 23.5 31.2 29.2 32.4 35.8 19.3 28.5 34.8 26.2 35.4 34.0 33.5 10/27/202505:00 12.8 17.0 15.5 14.3 17.1 14.4 19.2 38.0 19.6 25.1 31.4 25.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.6 10/27/202505:00 13.1 17.3 15.8 14.6 17.5 14.6 19.5 38.7 26.0 27.7 37.5 28.0 40.5 34.0 34.7 45.7 19.9 28.9 35.6 26.8 36.3 34.6 33.9 10/27/202505:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.3 10/27/202506:00 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 11/27/202506:00 14.2 18.4 16.7 15.7 18.7 15.5 20.4 41.0 35.0 39.1 57.1 40.7 50.0 50.2 33.0 65.9 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/20251:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 48.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2																									37.1 37.2
10/27/202506:00 12.8 17.0 15.5 14.3 17.1 14.4 19.2 38.0 19.6 25.1 31.4 25.7 35.7 32.1 34.0 40.1 19.5 28.7 35.1 26.5 35.7 34.2 33.6 10/27/202506:00 13.1 17.3 15.8 14.6 17.5 14.6 19.5 38.7 26.0 27.7 37.5 28.0 40.5 34.0 34.7 45.7 19.9 28.9 35.6 28.8 36.3 34.6 33.9 10/27/202506:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.3 10/27/202506:00 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/202506:00 14.2 18.4 16.7 15.7 18.7 15.5 20.4 41.0 35.0 39.1 57.1 40.7 50.0 50.2 33.0 65.9 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/202506:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 45.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2	10/27/2025 03:00	12.5	16.7	15.2	14.0	16.7	14.1	18.8	37.4	16.6	22.5	26.7	22.6	30.8	28.3	31.9	35.0	19.2	28.4	34.7	26.1	35.2	33.8	33.5	37.4
10/27/2025 06:00 13.1 17.3 15.8 14.6 17.5 14.6 19.5 38.7 26.0 27.7 37.5 28.0 40.5 34.0 34.7 45.7 19.9 28.9 35.6 26.8 36.3 34.6 33.9 10/27/2025 08:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.3 10/27/2025 08:00 14.2 18.4 16.7 15.5 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 39.2 32.8 51.9 20.9 29.6 36.8 27.7 37.4 35.4 34.6 10/27/2025 09:00 14.2 18.4 16.7 15.7 18.7 15.5 20.4 41.0 35.0 39.1 57.1 40.7 50.0 50.2 33.0 65.9 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/2025 10:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 48.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2																									37.6 38
10/27/2025 07:00 13.4 17.6 16.1 14.9 17.9 14.9 19.8 39.3 26.9 30.3 39.6 32.3 42.5 37.0 34.3 49.1 20.4 29.2 36.2 27.2 36.8 35.0 34.3 10/27/2025 08:00 13.8 18.0 16.4 15.3 18.3 15.2 20.1 39.9 29.3 34.4 43.7 35.0 44.3 35.0 34.3 55.0 44.3 35.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.3 55.0 45.0 55.0 55.0 55.0 55.0 55.0 55.0																									38 38.7
10/27/2025 09:00 142 18.4 16.7 15.7 18.7 15.5 20.4 41.0 35.0 39.1 57.1 40.7 50.0 50.2 33.0 65.9 21.3 30.1 37.8 28.4 37.9 36.2 34.9 10/27/2025 10:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 48.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2	10/27/2025 07:00	13.4	17.6	16.1	14.9	17.9	14.9	19.8	39.3	26.9	30.3	39.6	32.3	42.5	37.0	34.3	49.1	20.4	29.2	36.2	27.2	36.8	35.0	34.3	39.3
10/27/2025 10:00 14.6 18.8 17.1 16.1 19.3 15.8 20.7 42.2 32.2 39.3 54.3 41.4 56.8 48.5 31.2 69.5 21.7 30.6 38.6 29.1 38.8 36.8 35.2																									39.9 41
																									42.2
	10/27/2025 11:00	15.0	19.3	17.4	16.5	19.7	16.2	20.9	43.5	33.2	40.8	56.4	43.2	58.2	51.1	29.3	72.1	22.2	31.0	39.3	29.7	39.5	37.4	35.4	43.5

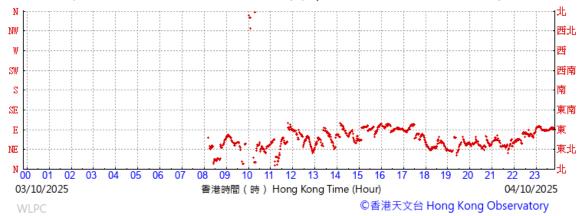
Time	M03	M04	24-hou M06	r Rolling Av M09	erage FSP (μg/m³) M13	M14	M15a	M03	M04	1-h M06	our Average	RSP (µg/ı	m³) M13	M14	M15a	M03	M04	24-hour M06	Rolling Av	erage RSP (μg/m³) M13	M14	M15a
10/27/2025 12:00	15.3	19.6	17.7	16.9	20.2	16.4	21.1	44.6	31.0	37.9	54.9	38.5	53.7	46.0	28.6	61.9	22.6	31.4	40.0	30.3	40.2	37.8	35.5	44.6
10/27/2025 13:00	15.7	20.0	18.0	17.3	20.6	16.7	21.1	45.8	32.8	38.3	51.5	39.6	52.9	46.1	30.0	59.6	23.1	31.7	40.7	30.8	40.7	38.3	35.5	45.8
10/27/2025 14:00 10/27/2025 15:00	16.1 16.5	20.4	18.3 18.7	17.7 18.2	21.1	17.0 17.3	21.2 21.3	47.1 48.6	31.0 31.8	39.6 41.3	56.3 54.9	41.3 44.1	51.4 55.2	47.9 52.1	31.0 33.5	63.3 69.1	23.6 24.2	32.2 32.7	41.6 42.4	31.4 32.3	41.3 42.1	38.8 39.5	35.5 35.5	47.1 48.6
10/27/2025 16:00	16.9	21.3	19.1	18.6	21.9	17.8	21.4	50.2	33.3	41.7	57.6	44.4	54.3	61.3	37.1	71.6	24.8	33.1	43.4	33.0	42.9	40.6	35.4	50.2
10/27/2025 17:00	17.3	21.4	19.3	18.9	22.2	18.0	21.5	51.6	32.0	41.7	57.1	43.5	53.4	54.8	39.1	73.1	25.4	33.3	43.8	33.4	43.5	41.0	35.5	51.6
10/27/2025 18:00 10/27/2025 19:00	17.5 17.7	21.3 21.2	19.4 19.5	19.0 19.2	22.1	18.2 18.4	21.7 21.9	51.9 52.2	28.8	34.6 34.7	47.5 45.9	36.6 36.1	50.6 47.3	44.7 39.8	40.2 37.8	61.2 53.3	25.6 25.8	32.9 32.8	43.5 43.4	33.5 33.7	43.3 43.6	41.0 41.0	35.5 35.6	51.9 52.2
10/27/2025 20:00	17.8	21.3	19.7	19.4	22.6	18.6	21.9	52.4	22.2	30.4	40.6	32.9	37.7	36.6	33.0	44.4	25.9	32.7	43.3	33.7	43.6	40.9	35.4	52.4
10/27/2025 21:00 10/27/2025 22:00	18.1 18.3	21.5 21.7	19.9 20.2	19.6 19.8	22.8	18.9 19.1	21.9 21.7	52.4 52.5	26.6 25.0	32.5 30.7	41.0 42.2	35.1 35.7	40.9 46.3	38.4 39.7	31.0 30.0	41.5 45.2	26.2 26.3	32.8 32.8	43.3 43.4	33.9 34.1	43.8 44.2	40.8 40.9	35.0 34.5	52.4 52.5
10/27/2025 23:00	18.5	22.0	20.5	20.1	23.5	19.3	21.7	52.8	25.2	32.1	42.3	35.0	41.2	41.4	34.7	46.5	26.6	33.0	43.8	34.5	44.4	41.2	34.0	52.8
10/28/2025 00:00	18.8	22.4	20.8	20.4	23.9	19.6	21.5	53.2	23.9	32.0	41.9	34.1	39.1	40.2	30.8	47.4	26.8	33.3	44.4	34.9	44.8	41.6	33.4	53.2
10/28/2025 01:00 10/28/2025 02:00	19.0 19.3	22.7	21.1 21.4	20.7	24.2	19.9 20.2	21.4	53.5 53.8	25.6 25.6	31.3	39.9	34.0 33.5	38.9	38.0 38.3	29.5 17.2	44.7 44.2	27.1 27.5	33.6 33.8	44.8 45.3	35.3 35.7	45.2 45.5	41.9 42.3	33.1 32.4	53.5 53.8
10/28/2025 03:00	19.6	23.3	21.7	21.3	24.9	20.4	20.6	54.2	22.9	27.6	35.2	30.0	36.8	35.1	18.4	43.5	27.8	34.1	45.6	36.0	45.8	42.6	31.8	54.2
10/28/2025 04:00	19.8	23.5	21.9	21.5	25.1	20.6	20.3	54.4	22.3	27.3	33.3	29.3	34.3	34.4	21.2	41.2	28.0	34.2	45.9	36.3	45.9	42.8	31.4	54.4
10/28/2025 05:00 10/28/2025 06:00	19.8 19.9	23.6 23.7	22.0 22.1	21.6	25.2 25.3	20.8 20.9	19.9 19.2	54.4 54.2	20.7	26.4 26.8	33.2	28.3 31.3	33.7 38.2	34.0 35.6	18.3 11.0	40.0 41.3	28.0 27.9	34.2 34.2	46.0 46.0	36.4 36.5	45.8 45.7	42.9 42.9	30.7 29.7	54.4 54.2
10/28/2025 07:00	19.9	23.8	22.2	21.8	25.3	21.0	18.7	54.2	25.7	30.4	45.1	33.9	44.8	37.6	17.1	47.5	27.9	34.2	46.2	36.6	45.8	43.0	29.0	54.2
10/28/2025 08:00 10/28/2025 09:00	19.9 19.9	23.8	22.3 22.4	21.8 21.9	25.4 25.5	21.0 21.2	18.7 18.8	54.1 53.9	30.3 29.2	32.3 34.9	45.7 49.2	35.4 38.0	48.6 55.7	40.8 45.0	31.0 32.3	51.1 59.8	27.9 27.7	34.1	46.3 46.0	36.6 36.5	46.0 46.2	43.0 42.8	28.9 28.9	54.1 53.9
10/28/2025 10:00	20.0	23.9	22.6	21.9	25.6	21.3	18.8	53.7	32.1	37.2	51.5	41.2	52.8	47.0	31.8	64.9	27.6	33.9	45.9	36.5	46.1	42.7	28.9	53.7
10/28/2025 11:00 10/28/2025 12:00	20.1	24.0 24.0	22.8 23.1	22.0 22.2	25.9 26.1	21.5 21.7	18.9 19.0	53.4 53.5	33.2 30.4	36.1 33.2	49.2 52.1	42.7 39.9	54.4 54.5	47.2 45.0	31.0 31.2	66.0 64.1	27.6 27.6	33.7 33.5	45.6 45.4	36.4 36.5	45.9 45.9	42.6 42.5	29.0 29.1	53.4 53.5
10/28/2025 12:00	20.2	24.0	23.1	22.2	26.1	21.7	19.0	53.3	24.7	29.4	45.6	32.0	46.4	38.6	29.9	54.1	27.6	33.1	45.4	36.2	45.9	42.5	29.1	53.3
10/28/2025 14:00	19.9	23.9	23.2	21.9	26.1	21.8	19.1	52.7	22.2	27.9	37.9	29.8	44.6	35.9	30.5	49.7	26.9	32.6	44.4	35.7	45.4	41.7	29.1	52.7
10/28/2025 15:00 10/28/2025 16:00	19.7 19.7	23.6 23.5	23.0 23.0	21.7	25.9 26.0	21.6 21.6	19.2 19.0	51.8 51.2	22.8	28.2 31.6	38.1 43.1	31.0 35.1	42.9 54.1	34.3 41.5	34.3 31.7	45.9 57.0	26.5 26.3	32.1 31.6	43.7 43.1	35.2 34.8	44.9 44.9	41.0	29.1	51.8 51.2
10/28/2025 17:00	19.6	23.3	22.8	21.4	25.9	21.5	18.7	50.1	25.7	35.0	38.4	34.1	44.6	37.3	27.2	48.4	26.0	31.4	42.3	34.4	44.5	39.4	28.4	50.1
10/28/2025 18:00	19.5	23.2	22.8	21.4	25.8	21.4	18.3	49.4	26.0	34.9	38.0	34.7	43.3	34.0	25.7	43.7	25.9	31.4	41.9	34.3	44.2	39.0	27.8	49.4
10/28/2025 19:00 10/28/2025 20:00	19.1 19.0	22.9 22.6	22.4 22.1	21.0 20.7	25.3 25.0	21.0 20.7	17.9 17.6	48.5 47.8	16.5 18.0	20.8 18.3	23.7 26.5	20.5	24.1 26.0	20.5 22.0	24.2 24.5	31.4 27.4	25.4 25.2	30.8	41.0 40.4	33.6 33.1	43.2 42.7	38.2 37.6	27.2 26.9	48.5 47.8
10/28/2025 21:00	18.8	22.3	21.9	20.5	24.7	20.4	17.3	47.5	20.3	23.5	27.6	24.9	33.7	25.8	23.3	35.9	25.0	29.9	39.9	32.7	42.4	37.1	26.5	47.5
10/28/2025 22:00 10/28/2025 23:00	18.6 18.0	22.1 21.4	21.5 20.9	20.2 19.6	24.3 23.6	20.1 19.5	17.0 16.5	47.3 46.1	16.5 8.3	23.9 13.6	26.2 13.0	23.7 11.7	31.4 15.1	28.8 14.1	18.8 18.1	39.4 17.8	24.6 23.9	29.6 28.9	39.2 38.0	32.2 31.2	41.8 40.7	36.6 35.5	26.1 25.4	47.3 46.1
10/29/2025 00:00	17.9	21.2	20.5	19.4	23.1	19.1	16.1	45.0	20.0	21.6	22.9	24.0	22.3	21.1	18.2	19.9	23.7	28.4	37.2	30.8	40.0	34.7	24.9	45
10/29/2025 01:00 10/29/2025 02:00	18.0 18.1	21.2	20.5 20.6	19.4 19.4	23.2	19.1 19.1	15.7 15.7	45.1 45.2	28.9 26.2	30.5 28.5	37.5 37.2	33.2 32.1	41.2 40.2	36.9 37.6	22.4 16.9	48.0 47.1	23.9	28.4	37.1 37.0	30.8 30.7	40.1	34.6 34.6	24.6	45.1 45.2
10/29/2025 03:00	18.2	21.3	20.6	19.5	23.3	19.2	15.6	45.3	25.0	27.5	36.6	31.7	37.9	37.0	18.1	44.4	24.0	28.3	37.1	30.8	40.2	34.7	24.5	45.3
10/29/2025 04:00	18.3	21.4	20.7	19.6	23.4	19.3	15.5	45.5	24.5	28.0	36.6	31.9	38.7	35.9	26.4	46.5	24.1	28.4	37.2	30.9	40.4	34.7	24.7	45.5
10/29/2025 05:00 10/29/2025 06:00	18.4 18.4	21.5 21.6	20.8 20.9	19.7 19.8	23.6 23.8	19.4 19.5	15.5 15.7	45.7 45.8	23.9 24.0	27.7 28.2	36.0 37.7	31.7 31.9	39.7 41.6	37.4 36.9	22.7 21.6	44.5 44.6	24.2 24.2	28.4 28.5	37.3 37.3	31.0 31.1	40.6 40.8	34.9 34.9	24.9 25.4	45.7 45.8
10/29/2025 07:00	18.5	21.7	21.0	19.8	23.9	19.6	15.7	45.7	28.2	30.2	41.2	33.3	43.2	37.8	19.9	44.9	24.3	28.5	37.1	31.0	40.7	34.9	25.5	45.7
10/29/2025 08:00 10/29/2025 09:00	18.4 18.3	21.8 21.7	21.0 20.9	19.8 19.6	23.9	19.6 19.8	15.2 14.6	45.8 45.5	26.5 27.0	35.0 32.0	42.6 48.0	33.9 29.6	46.5 45.9	41.3 48.7	21.5 22.6	52.7 53.8	24.2	28.6 28.5	37.0 37.0	31.0 30.6	40.6 40.2	35.0 35.1	25.1 24.7	45.8 45.5
10/29/2025 10:00	18.0	21.5	20.6	19.2	23.3	19.6	14.2	44.6	22.6	30.8	42.9	26.6	38.9	34.7	22.5	44.2	23.7	28.2	36.6	30.0	39.6	34.6	24.3	44.6
10/29/2025 11:00 10/29/2025 12:00	17.6 17.1	21.1	20.2 19.8	18.8 18.3	22.7 22.2	19.2 18.7	13.7 13.2	43.4 42.1	21.0 19.1	29.9 27.5	30.9 28.1	24.4	35.2 32.6	29.8 28.7	22.7 21.7	36.1 33.8	23.2	27.9 27.7	35.8 34.8	29.2 28.5	38.8 37.9	33.9 33.2	24.0 23.6	43.4 42.1
10/29/2025 13:00	16.9	20.4	19.4	18.0	21.8	18.4	12.7	41.2	17.4	25.4	29.7	22.5	32.4	29.2	23.6	32.7	22.4	27.5	34.2	28.1	37.3	32.8	23.3	41.2
10/29/2025 14:00 10/29/2025 15:00	16.6 16.3	20.1 19.9	19.1 18.9	17.7 17.3	21.4 21.0	18.1 17.9	12.3 11.8	40.5 39.7	14.8 13.3	23.3 22.6	30.4 29.8	20.7 15.9	30.5 25.3	28.5 23.7	26.7 26.4	31.5 27.3	22.1 21.7	27.3 27.1	33.9 33.5	27.8 27.1	36.8 36.0	32.5 32.1	23.1 22.8	40.5 39.7
10/29/2025 16:00	15.7	19.3	18.4	16.7	20.2	17.9	11.5	38.4	9.4	16.3	24.8	12.7	20.5	22.9	27.5	25.7	21.7	26.5	32.8	26.2	34.6	31.3	22.6	38.4
10/29/2025 17:00	15.2	18.8	18.0	16.2	19.8	17.0	11.3	37.5	10.1	16.7	26.3	13.2	23.6	22.9	30.0	25.9	20.3	25.7	32.3	25.3	33.7	30.7	22.8	37.5
10/29/2025 18:00 10/29/2025 19:00	14.7 14.5	18.4 18.3	17.7 17.7	15.7 15.6	19.5 19.5	16.8 16.7	11.0 10.8	36.7 36.4	11.7	20.3 18.5	28.4 25.0	14.3	26.2 24.1	29.1 21.6	30.3 26.4	25.0 25.3	19.7 19.4	25.1 25.0	31.9 31.9	24.5	33.0 33.0	30.5	22.9	36.7 36.4
10/29/2025 20:00	14.3	18.2	17.6	15.4	19.4	16.7	10.6	36.4	10.2	19.0	22.5	16.6	20.4	20.7	24.0	25.5	19.1	25.0	31.7	24.1	32.8	30.5	23.0	36.4
10/29/2025 21:00 10/29/2025 22:00	13.9 13.6	17.9 17.6	17.5 17.4	15.2 14.9	19.3 19.1	16.6 16.5	10.5 10.6	36.1 35.6	8.5 8.8	16.0 17.4	26.5 26.4	16.6 16.2	27.3 24.1	32.8 28.6	28.3 31.5	29.1 27.2	18.6 18.3	24.7 24.4	31.7 31.7	23.8 23.4	32.5 32.2	30.8	23.2	36.1 35.6
10/29/2025 23:00	13.7	17.8	17.5	15.0	19.2	16.7	10.8	35.8	12.2	19.9	30.6	17.5	22.6	28.7	32.3	24.6	18.5	24.7	32.4	23.7	32.5	31.4	24.3	35.8
10/30/2025 00:00 10/30/2025 01:00	13.5 13.0	17.6 17.1	17.4 16.9	14.8 14.3	19.0 18.4	16.6 16.1	11.1 11.3	36.0 35.2	15.4 14.4	22.3	22.8	19.8 20.0	25.5 24.5	23.2 25.9	31.2 33.2	23.4	18.3 17.7	24.7 24.4	32.4 31.8	23.5	32.7 32.0	31.4 31.0	24.9 25.3	36 35.2
10/30/2025 02:00	12.6	16.6	16.3	13.9	17.7	15.5	11.6	34.5	15.1	23.6	22.3	19.9	25.5	26.8	33.1	32.0	17.2	24.2	31.2	22.5	31.4	30.5	26.0	34.5
10/30/2025 03:00	12.1	16.2	15.8	13.5	17.1	15.0	11.9	34.0	14.6	23.8	23.6	21.0	26.4	27.6	35.8	32.3	16.8	24.0	30.6	22.0	30.9	30.1	26.7	34
10/30/2025 04:00 10/30/2025 05:00	11.7 11.4	15.8 15.3	15.3 14.8	13.0 12.6	16.5 15.8	14.4 13.9	12.0 12.1	33.4 32.9	15.2 14.8	23.5	24.3	20.3	28.8 25.1	26.7 25.8	32.0 28.9	32.1 30.5	16.4 16.0	23.8	30.1 29.7	21.5 21.1	30.5 29.9	29.8 29.3	27.0 27.2	33.4 32.9
10/30/2025 06:00	11.0	15.0	14.3	12.2	15.2	13.3	12.1	32.5	15.6	27.3	27.8	24.4	28.8	28.3	22.3	35.0	15.7	23.6	29.3	20.8	29.3	28.9	27.3	32.5
10/30/2025 07:00 10/30/2025 08:00	10.7 10.5	14.6 14.2	13.8 13.3	11.9 11.6	14.6 13.9	12.8 12.2	12.1 12.0	32.5 32.4	20.2	31.9 34.3	35.4 41.0	30.2 31.8	40.2 39.2	33.1 34.3	19.9 14.5	45.0 51.5	15.3 15.1	23.7 23.7	29.1 29.0	20.6	29.2 28.9	28.7 28.4	27.3 27.0	32.5 32.4
10/30/2025 09:00	10.3	14.0	13.1	11.4	13.5	11.5	12.0	32.4	22.0	34.2	61.2	29.6	43.6	36.5	16.5	53.1	14.9	23.8	29.5	20.6	28.8	27.9	26.7	32.4
10/30/2025 10:00	10.2	13.9	12.9	11.3	13.3	11.3	12.0	32.5	21.7	34.6	48.9	30.8	47.5	39.9	21.5	46.6	14.9	23.9	29.8	20.7	29.2	28.1	26.7	32.5
10/30/2025 11:00 10/30/2025 12:00	10.1 10.0	13.7 13.6	12.6 12.5	11.3 11.2	13.0 12.7	11.0 10.8	12.1 12.1	32.8 33.0	25.4 20.8	34.6 30.4	40.6 39.6	29.2 26.4	43.7 37.6	37.1 33.9	30.7 17.4	43.6 38.9	15.1 15.1	24.1 24.2	30.2 30.7	20.9 21.1	29.5 29.7	28.4 28.7	27.0 26.8	32.8 33
10/30/2025 13:00	10.0	13.4	12.2	11.1	12.4	10.5	12.1	33.0	18.7	29.2	36.0	23.4	35.8	30.5	20.3	32.6	15.2	24.4	30.9	21.1	29.9	28.7	26.7	33
10/30/2025 14:00 10/30/2025 15:00	10.0 10.0	13.4 13.4	12.1 12.2	11.1 11.2	12.2 12.2	10.4 10.4	12.1 12.2	33.0 33.3	19.2 17.3	30.0 33.1	36.3 39.0	24.7 27.2	40.0 40.6	35.3 38.8	21.2 26.4	32.1 34.1	15.4 15.6	24.7 25.1	31.2 31.6	21.3 21.7	30.3	29.0 29.6	26.5 26.5	33 33.3
10/30/2025 16:00	10.3	13.7	12.4	11.6	12.5	10.5	12.4	34.0	19.3	35.3	43.0	32.5	39.7	39.7	33.8	41.7	16.0	25.9	32.3	22.6	31.7	30.3	26.7	34
10/30/2025 17:00 10/30/2025 18:00	10.6 10.9	14.1 14.4	12.6 12.8	12.0 12.4	12.6 12.6	10.7 10.8	12.7 13.1	35.0 36.0	19.3 23.0	34.0 38.3	45.5 54.3	35.7 40.2	39.3 43.5	43.9 46.5	34.4 37.9	50.4 49.0	16.3 16.8	26.6 27.4	33.1 34.2	23.5 24.6	32.4 33.1	31.2 31.9	26.9 27.2	35 36
10/30/2025 18:00	11.3	14.4	13.0	12.4	13.0	11.0	13.1	36.7	27.0	39.7	51.3	42.2	56.3	46.3	34.6	49.0	17.5	28.3	35.3	25.7	34.4	33.0	27.6	36.7
10/30/2025 20:00	11.7	15.2	13.3	13.2	13.3	11.2	13.9	37.5	22.6	35.4	54.0	35.1	49.6	51.5	32.2	46.6	18.0	28.9	36.6	26.5	35.6	34.2	27.9	37.5
10/30/2025 21:00 10/30/2025 22:00	12.0 12.1	15.5 15.7	13.5 13.6	13.5 13.6	13.4 13.5	11.3 11.3	14.3 14.5	38.0 38.3	19.4 15.9	31.0 26.4	42.6 37.8	28.6 25.1	38.2 33.6	42.0 36.4	38.8 38.4	41.0 33.2	18.5 18.8	29.6 29.9	37.3 37.8	27.0 27.4	36.1 36.5	34.6 34.9	28.4 28.6	38 38.3
10/30/2025 23:00	12.1	15.6	13.6	13.6	13.5	11.3	14.7	38.4	11.8	18.3	28.4	15.6	21.9	26.8	36.5	26.5	18.8	29.9	37.7	27.3	36.5	34.9	28.8	38.4
10/31/2025 00:00 10/31/2025 01:00	12.0 11.9	15.4 15.3	13.6 13.6	13.5 13.4	13.5 13.5	11.3 11.3	14.8 14.8	38.4 38.0	9.1	14.3 15.7	27.7 27.6	16.9 19.1	28.8 30.5	26.9 17.5	38.4 31.2	24.7 19.2	18.5 18.3	29.5 29.3	37.9 38.1	27.2 27.1	36.6 36.8	35.0 34.7	29.1 29.0	38.4 38
10/31/2025 02:00	11.7	15.2	13.7	13.4	13.5	11.3	14.7	37.4	9.9	15.8	30.4	20.2	26.3	23.0	28.0	17.5	18.1	28.9	38.5	27.1	36.9	34.5	28.8	37.4
10/31/2025 03:00	11.7	15.1	13.7	13.3	13.5	11.4	14.8	37.2	12.2	16.3	44.5	19.6	28.2	35.5 39.0	32.5	27.0 30.7	18.0	28.6	39.3 39.6	27.1	37.0	34.8	28.7	37.2
10/31/2025 04:00 10/31/2025 05:00	11.5 11.4	14.9 14.7	13.8 13.8	13.2 13.1	13.6 13.6	11.5 11.5	14.9 15.0	37.2 36.9	9.9	13.7 12.7	31.6 23.3	17.3 14.5	26.1 18.3	21.5	31.0 27.0	24.0	17.8 17.6	28.2 27.8	39.6	27.0 26.7	36.8 36.6	35.4 35.2	28.6 28.6	37.2 36.9
10/31/2025 06:00	11.3	14.6	13.8	13.0	13.5	11.5	15.2	36.3	12.1	14.6	26.3	16.6	19.5	25.7	26.6	20.4	17.4	27.2	39.4	26.4	36.2	35.1	28.7	36.3
10/31/2025 07:00 10/31/2025 08:00	11.1 11.0	14.4 14.3	13.9 14.1	12.8 12.8	13.5 13.6	11.6 11.8	15.3 15.5	35.5 34.7	14.1 15.3	18.9 22.3	32.7 35.9	17.4 21.2	25.8 37.3	25.0 29.7	11.7 13.4	25.2 32.9	17.2 16.9	26.7 26.2	39.3 39.1	25.8 25.4	35.6 35.5	34.7 34.5	28.4 28.4	35.5 34.7
10/31/2025 09:00	11.0	14.4	14.1	12.8	13.8	12.1	15.9	34.3	22.9	27.6	42.5	26.1	50.4	36.7	16.4	43.3	16.9	25.9	38.3	25.2	35.8	34.5	28.3	34.3
10/31/2025 10:00 10/31/2025 11:00	11.0 11.1	14.4 14.7	14.3 14.7	12.8 13.1	14.1 14.7	12.3 12.8	16.2 16.6	34.4 34.6	21.5 24.7	31.5 34.3	49.1 46.8	29.7 34.3	56.9 54.3	42.6 46.6	18.6 21.9	49.7 48.8	16.9 16.9	25.8 25.8	38.3 38.6	25.2 25.4	36.2 36.6	34.7 35.1	28.2 27.9	34.4 34.6
10/31/2025 12:00	11.1	15.0	15.1	13.1	15.2	13.2	17.1	34.8	23.9	30.8	43.8	31.9	47.7	42.3	20.4	44.0	17.0	25.8	38.8	25.4	37.0	35.4	28.0	34.8
10/31/2025 13:00 10/31/2025 14:00	11.6	15.3 15.6	15.4 15.7	13.7 13.9	15.7 16.1	13.6	17.5 17.9	35.2 36.1	22.3 25.9	28.3 33.1	46.3 45.1	28.9 33.2	48.5 52.6	40.2 49.7	19.2 20.7	41.0	17.2 17.5	25.8 25.9	39.2 39.6	25.9 26.2	37.6 38.1	35.8 36.4	27.9 27.9	35.2 36.1
10/31/2025 14:00	11.8 12.0	15.8	16.0	14.1	16.1	14.0 14.3	18.2	37.0	25.9	33.3	45.1	33.2	49.5	50.0	20.7	53.4 55.2	17.6	25.9	39.6	26.2	38.1	36.9	27.9	36.1
10/31/2025 16:00	12.0	15.8	16.0	14.1	16.7	14.5	18.2	37.3	19.8	32.5	41.6	30.6	47.3	45.7	18.3	49.3	17.6	25.8	39.8	26.3	38.8	37.1	27.0	37.3
10/31/2025 17:00 10/31/2025 18:00	12.1 12.0	15.8 15.6	16.0 15.9	14.1 13.9	16.7 16.7	14.6 14.6	18.2 18.0	37.8 37.7	22.7 18.7	32.9 27.3	49.8 41.4	32.7 25.7	44.6 41.2	52.4 40.0	17.8 16.4	63.2 46.2	17.8 17.6	25.7 25.3	40.0 39.5	26.2 25.6	39.0 38.9	37.5 37.2	26.3 25.4	37.8 37.7
10/31/2025 19:00	11.7	15.3	15.9	13.6	16.5	14.6	17.7	37.6	18.3	26.5	39.6	23.9	38.0	33.4	15.0	39.5	17.2	24.7	39.0	24.8	38.1	36.7	24.6	37.6
10/31/2025 20:00 10/31/2025 21:00	11.6 11.6	15.1 15.1	15.8 15.8	13.5 13.4	16.6 16.8	14.6 14.7	17.7 17.6	37.4 37.3	19.4 19.5	26.3 26.1	38.3	25.1 24.5	45.6 46.8	36.2 35.1	19.0 18.1	41.2	17.1 17.1	24.4	38.3 37.8	24.4	38.0 38.3	36.0 35.7	24.1	37.4 37.3
	2.0												2.5											

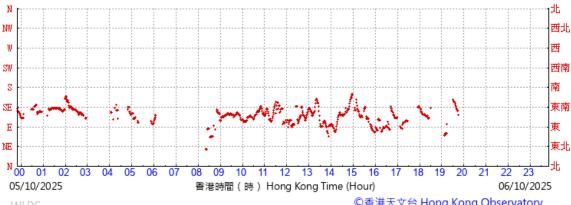
Time			24-hour	Rolling Av	erage FSP	(µg/m³)					1-h	our Averag	e RSP (μg/n	n ³)					24-hour	Rolling Av	erage RSP (µg/m³)		
	M03	M04	M06	M09	M11	M13	M14	M15a	M03	M04	M06	M09	M11	M13	M14	M15a	M03	M04	M06	M09	M11	M13	M14	M15a
10/31/2025 22:00	11.7	15.1	15.9	13.5	17.1	14.8	17.5	37.6	20.2	23.1	29.6	23.6	39.0	32.7	16.0	38.3	17.3	24.0	37.5	24.2	38.5	35.6	22.3	37.6
10/31/2025 23:00	11.9	15.3	16.0	13.7	17.5	15.0	17.3	37.9	17.9	20.5	29.7	21.7	33.3	28.4	15.5	36.0	17.5	24.1	37.5	24.4	39.0	35.7	21.4	37.9



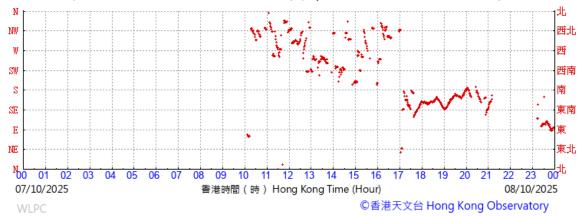



ANNEX D4 WIND CONDITIONS

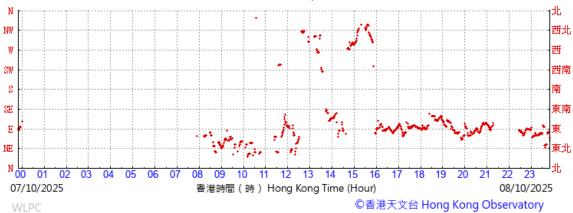

Annex D4 Wind Direction


(於香港時間04/10/2025 23 時 50 分更新) (Updated at 23:50H on 04/10/2025)

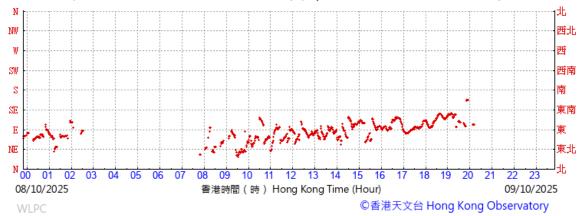
(於香港時間06/10/2025 00 時 00 分更新) (Updated at 00:00H on 06/10/2025)

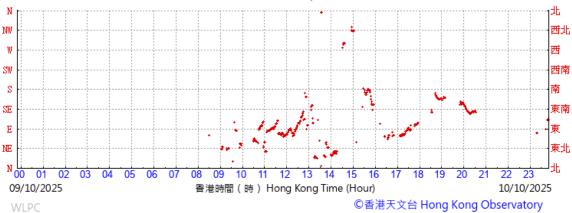


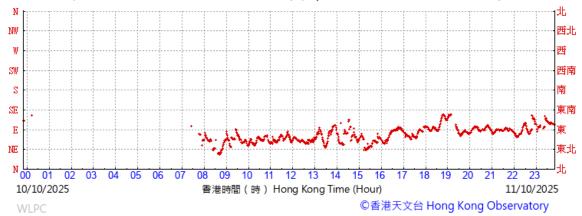
(於香港時間06/10/2025 23 時 50 分更新) (Updated at 23:50H on 06/10/2025)

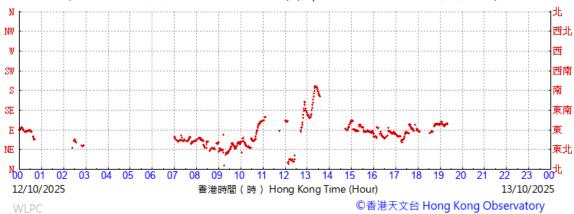


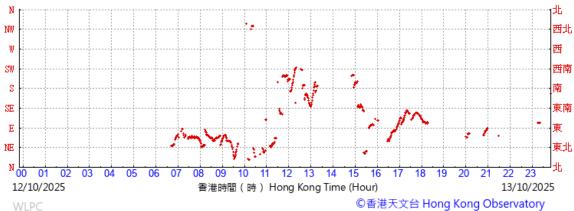
©香港天文台 Hong Kong Observatory

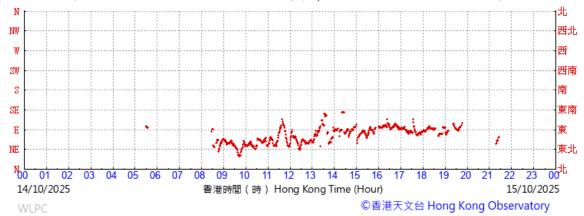

(於香港時間08/10/2025 00 時 00 分更新) (Updated at 00:00H on 08/10/2025)

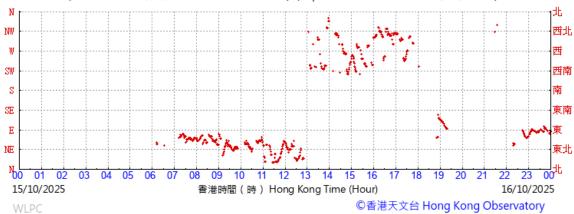

(於香港時間08/10/2025 23 時 50 分更新) (Updated at 23:50H on 08/10/2025)

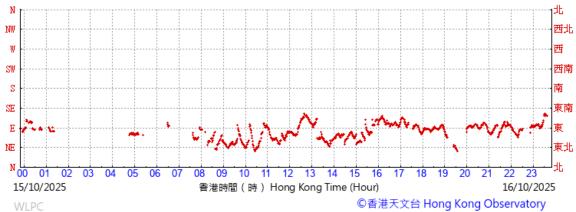

(於香港時間09/10/2025 23 時 50 分更新) (Updated at 23:50H on 09/10/2025)

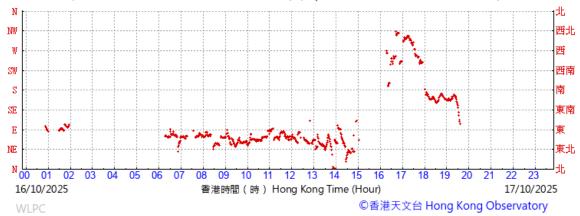

(於香港時間10/10/2025 23 時 50 分更新) (Updated at 23:50H on 10/10/2025)

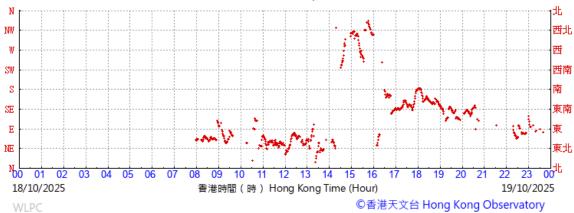

(於香港時間11/10/2025 23 時 50 分更新) (Updated at 23:50H on 11/10/2025)

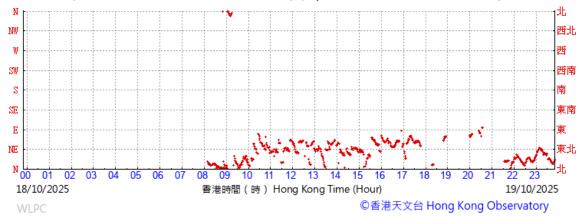

(於香港時間13/10/2025 00 時 00 分更新) (Updated at 00:00H on 13/10/2025)

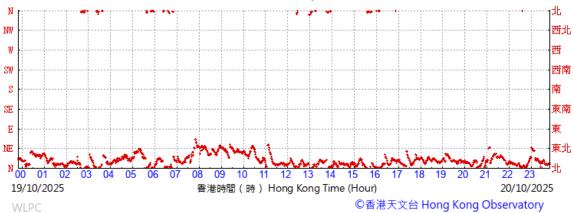

(於香港時間13/10/2025 23 時 50 分更新) (Updated at 23:50H on 13/10/2025)

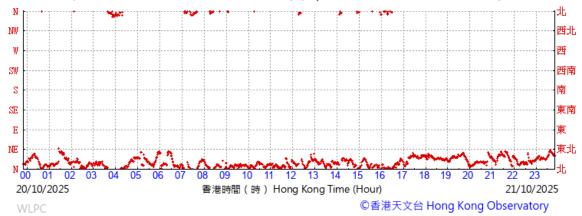

(於香港時間15/10/2025 00 時 00 分更新) (Updated at 00:00H on 15/10/2025)

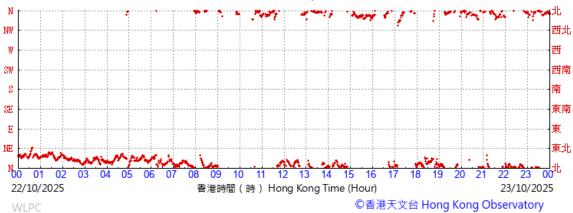

(於香港時間16/10/2025 00 時 00 分更新) (Updated at 00:00H on 16/10/2025)

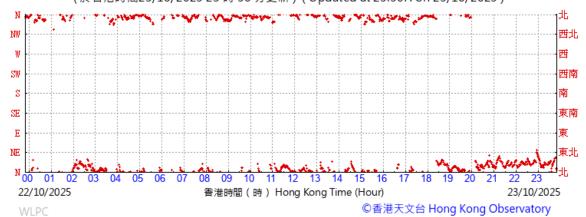

(於香港時間16/10/2025 23 時 50 分更新) (Updated at 23:50H on 16/10/2025)

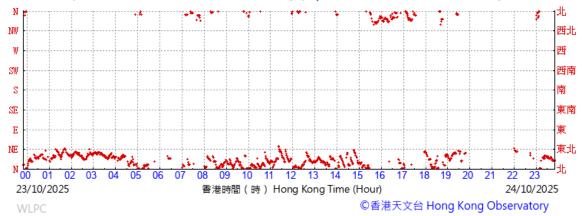

(於香港時間17/10/2025 23 時 50 分更新) (Updated at 23:50H on 17/10/2025)

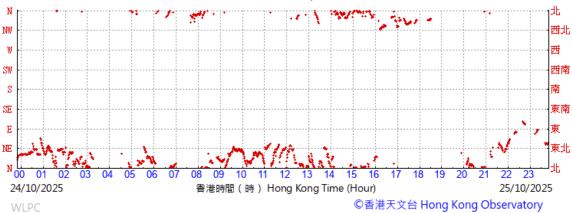

(於香港時間19/10/2025 00 時 00 分更新) (Updated at 00:00H on 19/10/2025)


(於香港時間19/10/2025 23 時 50 分更新) (Updated at 23:50H on 19/10/2025)


(於香港時間20/10/2025 23 時 50 分更新) (Updated at 23:50H on 20/10/2025)

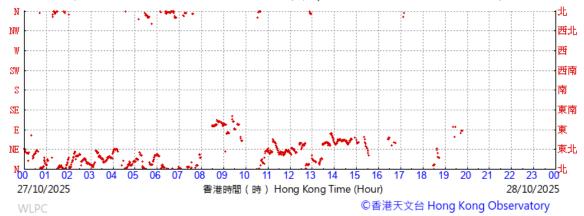

(於香港時間21/10/2025 23 時 50 分更新) (Updated at 23:50H on 21/10/2025)


(於香港時間23/10/2025 00 時 00 分更新) (Updated at 00:00H on 23/10/2025)

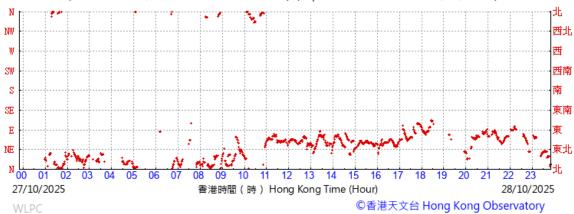

(於香港時間23/10/2025 23 時 50 分更新) (Updated at 23:50H on 23/10/2025)

(於香港時間24/10/2025 23 時 50 分更新) (Updated at 23:50H on 24/10/2025)

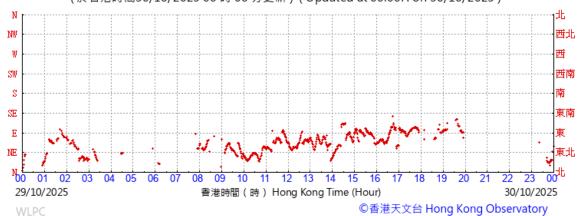
(於香港時間25/10/2025 23 時 50 分更新) (Updated at 23:50H on 25/10/2025)



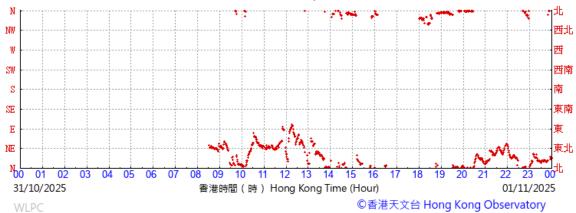
(於香港時間26/10/2025 23 時 50 分更新) (Updated at 23:50H on 26/10/2025)



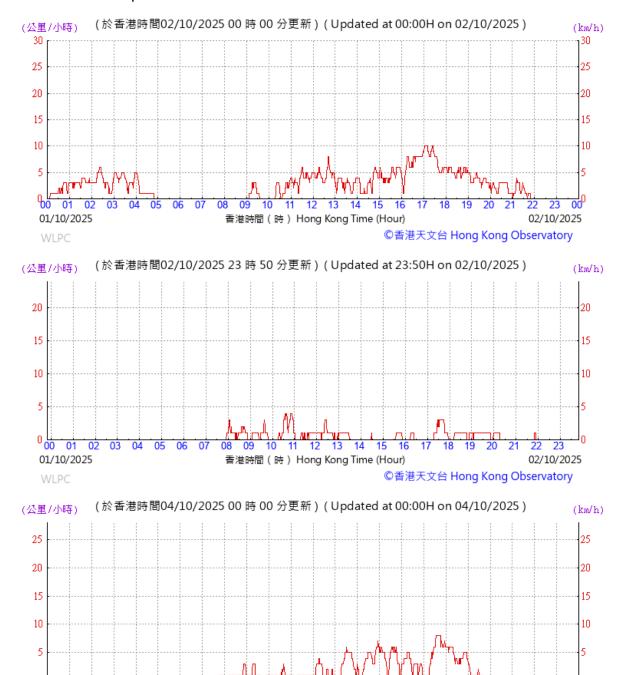
WLPC ©香港天文台 Hong Kong Observatory


(於香港時間28/10/2025 00 時 00 分更新) (Updated at 00:00H on 28/10/2025)

(於香港時間28/10/2025 23 時 50 分更新) (Updated at 23:50H on 28/10/2025)


(於香港時間30/10/2025 00 時 00 分更新) (Updated at 00:00H on 30/10/2025)

(於香港時間30/10/2025 23 時 50 分更新) (Updated at 23:50H on 30/10/2025)



(於香港時間01/11/2025 00 時 00 分更新) (Updated at 00:00H on 01/11/2025)

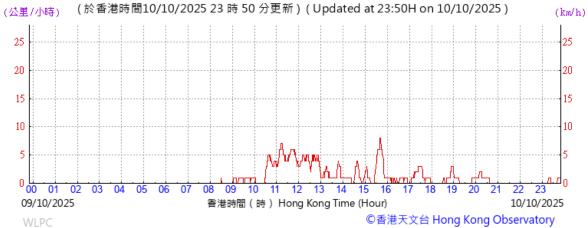
Annex D4 Wind Speed

03/10/2025

香港時間 (時) Hong Kong Time (Hour)

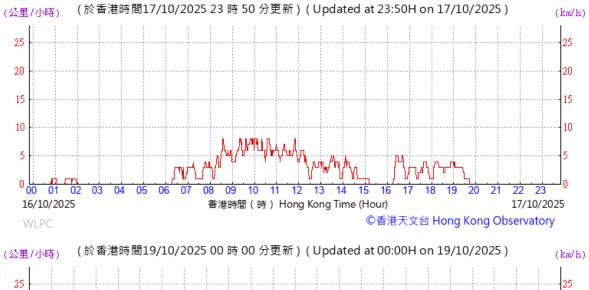
04/10/2025

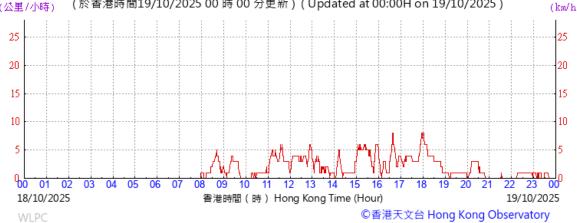
©香港天文台 Hong Kong Observatory

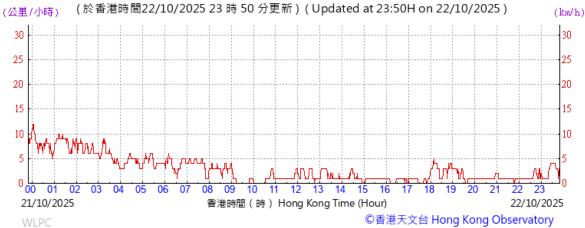


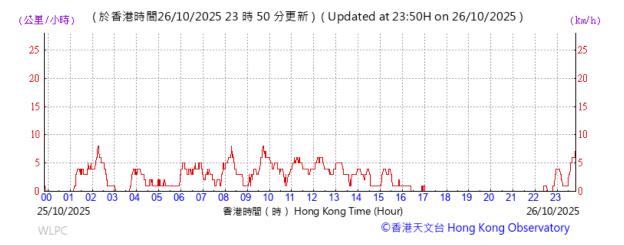












ANNEX D5

EVENT AND ACTION PLAN FOR AIR QUALITY MONITORING

Event		Action										
	ET	IEC	ER	Contractor								
Action level exceedance for one sample	 Notify IEC and ER; Check the monitoring data and error messages to confirm if the performance of the monitoring equipment is normal; If exceedance is confirmed, identify source(s), investigate the causes of exceedance and propose remedial measures; Assess effectiveness of Contractor's remedial measures and keep IEC and ER informed of the results until exceedance stops. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET, ER and Contractor on possible remedial measures; Advise ER and ET on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with IEC and ET, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures are properly implemented. 	 Identify sources of exceedance and discuss with ER, ET and IEC on possible remedial measures; Implement remedial measures; Amend working methods if appropriate. 								
Action level exceedance for two or more consecutive samples	 Notify IEC and ER; Check the monitoring data and the performance of the monitoring equipment (refer to Annex A); If exceedance is confirmed, identify source(s), investigate the causes of exceedance and propose remedial measures; Discuss with IEC and Contractor on possible remedial measures required; Assess effectiveness of Contractor's remedial measures and keep IEC and ER informed of the results until exceedance stops. 	 Check monitoring data submitted by ET; Check Contractor's working method and verify the performance of the monitoring equipment to be checked by ET (refer to Annex A); Discuss with ET and Contractor on possible remedial measures; Advise ER and ET on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with IEC and ET, agree with the Contractor on the proposal for remedial measures to be implemented; Ensure the proposal for remedial measures are properly implemented. 	 Identify the sources and discuss with ER, ET and IEC on possible remedial measures; Submit a proposal for remedial measures to ER, IEC and ET within 2 working days of notification of exceedance for agreement; Implement the agreed proposal; Amend proposal if appropriate. 								

Event	Action										
	ET	IEC	ER	Contractor							
	6. Notify EPD if the exceedance is confirmed to be related to the Project.										
Limit level exceedance for one 24-hr rolling average RSP concentration record or/and one 24-hr rolling average FSP concentration record	 Notify IEC, ER, Contractor and EPD; Check the monitoring data and the performance of the monitoring equipment (refer to Annex A); If exceedance is confirmed, identify source(s), investigate the causes of exceedance and propose remedial measures; Discuss with IEC, ER and Contractor on possible remedial measures required; Assess effectiveness of Contractor's remedial measures and keep IEC and ER informed of the results until exceedance stops. Notify EPD if the exceedance is confirmed to be related to the Project. 	 Check monitoring data submitted by ET; Check Contractor's working method; and verify the performance of the monitoring equipment to be checked by ET (refer to Annex A); Discuss with ER, ET and Contractor on the possible remedial measures; Advise ER and ET on the effectiveness of the proposed remedial measures; Review Contractor's remedial measures whenever necessary to assure their effectiveness and advise ER and ET accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the IEC and ET, agree with the Contractor on the proposal for remedial measures to be implemented; Ensure the proposal for remedial measures are properly implemented; If exceedance continues, identify what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Identify the sources and discuss with ER, ET and IEC on possible remedial measures; Take immediate action to avoid further exceedance; Submit a proposal for remedial measures to ER, IEC and ET within 2 working days of notification of exceedance for agreement; Implement the agreed proposal; Review and resubmit proposals if the problem is still not under control; Stop the relevant portion of works as determined by ER until the exceedance is abated. 							

ANNEX E1

CALIBRATION CERTIFICATES (SOUND LEVEL METERS AND ACOUSTIC CALIBRATORS)

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

Certificate of Calibration

Certificate No. ATS25-066-CC002

Customer:

Envirotech Services Company

Room 712, 7/F, My Loft,

9 Hoi Wing Road, Tuen Mun

N.T., Hong Kong

Unit-under-test (UUT):

Description:

Precision Acoustic Calibrator

Manufacturer:

Larson Davis

Type No.:

CAL 200

Serial No.:

11333

Conditions during calibration:

Temperature:

26°C

Relative Humidity:

59%

Test Specifications:

Calibration Check

Date of calibration:

15 July 2025

Test Results:

All calibration points are within manufacturer's specification.

Certified by:

Mr. Y. T. LAUNG Mechanical Manager

MIOA, MHKIOA, MHKIQEP

Issue Date: 15 July 2025

Certificate No.: ATS25-066-CC002

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

1. The instrument under test was allowed to stabilize in the laboratory for over 24 hours.

2. Calibration equipment:

Description:

Sound Analyzer

Reference Microphone

Manufacturer:

Brüel & Kjær

Brüel & Kjær

Type No.:

2270

4189

Serial No.:

3001883

2662797

Last Calibration Date:

11 March 2025

11 March 2025

Certificate No.:

AV250047

AV250047

The calibration equipment used for calibration is traceable to National Standards via Standards and Calibration Laboratory, the Government of the HKSAR.

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted, if any, will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. Acoustic Testing Services Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Calibration Results

Nominal value	Measured value	IEC 60942 Class 1 Tolerance Limits	Conclusion	Expanded Measurement Uncertainty of Reference Microphone B&K 4189 at 1000 Hz
dB	dB	dB		dB
94.00	93.84	± 0.25	PASS	0.20
114.0	113.75	± 0.25	PASS	0.20

All calibration points are within manufacturer's specification.

Certificate No.: ATS25-066-CC002

Certificate of Calibration

Description:

Sound Level Meter

Manufacturer:

RION

Type No.:

NL-52 (Serial No.: 00331806)

Microphone:

UC-53A (Serial No.: 316987)

Preamplifier:

NH-25 (Serial No.:21571)

Submitted by:

Customer:

Envirotech Services Co.

Address:

Rm.712, 7/F., My Loft, 9 Hoi Wing Road,

Tuen Mun, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 19 November 2024

Date of calibration: 22 November 2024

Date of NEXT calibration: 21 November 2025

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa

Laboratory Manager

Date of issue: 22 November 2024

Certificate No.: APJ24-100-CC001

Page 1 of 4

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

24.9 °C

Air Pressure:

1006 **hPa**

Relative Humidity:

44.0 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV240081

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)				Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB Frequency, Hz		dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
		See	114		114.2	±0.3	

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB		
			Fast	20 16		94.0	Ref
30-130	dBA SPI	SPL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ24-100-CC001

Page 2 of 4

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

Frequency Response

Linear Response

Setti	ing of Unit	-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. We	eighting	Time Weighting	Level, dB Frequency, Hz		dB	Specification, dB
					31.5	94.1	±2.0
	dB SI			-	63	94.1	±1.5
			Fast	94	125	94.0	±1.5
					250	94.0	±1.4
30-130		SPL			500	94.0	±1.4
					1000	94.0	Ref
					2000	93.9	±1.6
					4000	93.6	±1.6
					8000	91.4	+2.1; -3.1

A-weighting

Sett	ing of Un	iit-under-t	est (UUT)	Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	B Freq. Weighting		Time Weighting	e Weighting Level, dB		dB	Specification, dB
					31.5	54.8	-39.4 ±2.0
		SPL			63	67.9	-26.2 ±1.5
			Fast	94	125	78.0	-16.1±1.5
					250	85.4	-8.6±1.4
30-130	dBA				500	90.8	-3.2±1.4
					1000	94.0	Ref
					2000	95.1	+1.2±1.6
					4000	94.6	+1.0±1.6
					8000	90.4	-1.1+2.1; -3.1

C-weighting

Sett	Setting of Unit-under-test (UUT)				Applied value		IEC 61672 Class 1
Range, dB	ge, dB Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB	
					31.5	91.1	-3.0 ± 2.0
11 1					63	93.3	-0.8 ±1.5
	dBC	SPL	Fast	94	125	93.9	-0.2 ±1.5
					250	94.0	-0.0 ± 1.4
30-130					500	94.0	-0.0 ± 1.4
					1000	94.0	Ref
					2000	93.7	-0.2 ±1.6
					4000	92.9	-0.8 ±1.6
					8000	88.5	-3.0 + 2.1: -3.1

Certificate No.: APJ24-100-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.05
	63 Hz	± 0.10
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

(A+A) *L

E-mail: inquiry@aa-lab.com

Page 4 of 4

Homenage: http://www.aa-lab.com

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

Certificate of Calibration

Certificate No. ATS25-066-CC004

Customer:

Envirotech Services Company

Room 712, 7/F, My Loft,

9 Hoi Wing Road, Tuen Mun

N.T., Hong Kong

Unit-under-test (UUT):

Description:

Sound Level Meter

Microphone

Pre-amplifier

Manufacturer:

RION

Type No.:

NL-52

UC-59

NH-25

Serial No.:

00542913

06829

76317

Conditions during calibration:

Temperature:

26°C

Relative Humidity:

56%

Test Specifications:

Calibration Check

Date of calibration:

22 August 2025

Test Results:

All calibration points are within manufacturer's specification.

Certified by:

Mr. Y. T. EUNG kTechnical Manager

MIOA, MHKTOEP

Issue Date: 22 August 2025

Unit E, 2/F., Century Industrial Centre, 33-35 Au Pui Wan Street, Fo Tan, Shatin, New Territories, Hong Kong Tel: (852) 2690 9126 Fax: (852) 2690 9125 E-mail: info@ATSL.com.hk http://www.ATSL.com.hk

1. The instrument under test was allowed to stabilize in the laboratory for over 24 hours.

2. Calibration equipment:

Description:

Acoustical Calibrator

Manufacturer & Type:

Brüel & Kjær 4231

Serial No.:

2478237

Last Calibration Date:

18 February 2025

Certificate No.:

AV250027

The calibration equipment used for calibration is traceable to National Standards via Standards and Calibration Laboratory, the Government of the HKSAR.

- 3. The Sound Analyzer has been calibrated in accordance with the requirements as specified in IEC 61672-1 Class 1, and vendor specific procedures.
- 4. The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted, if any, will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. Acoustic Testing Services Limited shall not be liable for any loss or damage resulting from the use of the equipment.

5. Calibration Results

Setting of unit-under-test (UUT)			Applied value		UUT	IEC 61672-1 Class 1	Canalusian	
Range, dB	Parameter	Frequency Weighting	Response	Level, dB	Frequency, Hz	Reading, dB	Tolerance Limits, dB	Conclusion
			F	5		94.1	± 0.7	PASS
		Α	S	94.00		94.1	± 0.7	PASS
		_	F		4000	94.1	± 0.7	PASS
		С	S		1000	94.1	± 0.7	PASS
30-130	SPL	SPL L	F			94.1	± 0.7	PASS
			S			94.1	± 0.7	PASS
		А	F	114.00	1000	114.1	± 0.7	PASS
			S			114.1	± 0.7	PASS -

All calibration points are within manufacturer's specification.

ANNEX E2

NOISE MONITORING SCHEDULE DURING REPORTING PERIOD

Agreement No. CE 2/2025 (EP)

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction ND/2024/09 - Noise Impact Monitoring Schedule (October 2025)

ND/2024/03 - Noise impact Monitoring Ochedule (October 2023)										
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday				
			1/Oct	2/Oct	3/Oct	4/Oct				
5/Oct	6/Oct	7/Oct	8/Oct	9/Oct	10/Oct	11/Oct				
			Noise Monitoring							
			CM1, CM3, CM4							
12/Oct	13/Oct	14/Oct	15/Oct	16/Oct	17/Oct	18/Oct				
		Noise Monitoring								
		CM1, CM3, CM4								
		CM1, CM3, CM4								
19/Oct	20/Oct	21/Oct	22/Oct	23/Oct	24/Oct	25/Oct				
19/000	20/000	21/001	22/000	25/001	24/001	25/001				
		Noise Monitoring								
		CM1, CM3, CM4								
26/Oct	27/Oct	28/Oct	29/Oct	30/Oct	31/Oct					
						_				
		Noise Monitoring								
		CM1, CM3, CM4								

Agreement No. CE 2/2025 (EP)

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Noise Impact Monitoring Schedule (October 2025)

			npact Monitoring Sc			
Sunday	Monday	Tuesday		Thursday	Friday	Saturday
			1/Oct		3/Oct	4/Oct
5/Oct	6/Oct	7/Oct	8/Oct	9/Oct	10/Oct	11/Oct
	Noise Monitoring					
	CM9, CM10, CM11					
12/Oct	13/Oct	14/Oct	15/Oct	16/Oct	17/Oct	18/Oct
	Noise Monitoring					
	CM9, CM10, CM11					
19/Oct	20/Oct	21/Oct	22/Oct	23/Oct	24/Oct	25/Oct
	Noise Monitoring					
	CM9, CM10, CM11					
26/Oct	27/Oct	28/Oct	29/Oct	30/Oct	31/Oct	
	Noise Monitoring					
	CM9, CM10, CM11					
				l		

ANNEX E3 NOISE MONITORING RESULTS

Annex E3 - Monitoring Results for Noise

Noise Monitoring Data at Station CM1 (for Works Contract No. ND/2024/09)

Date and Time	L _{eq(5 min)}	L ₁₀	L ₉₀	L _{eq(30 min)}
2025-10-08 10:30	70.0	72.5	61.1	,
2025-10-08 10:35	71.4	75.2	62.1	Ī
2025-10-08 10:40	68.7	70.9	61.8	69.4
2025-10-08 10:45	68.3	71.5	62.0	69.4
2025-10-08 10:50	69.4	72.7	61.9	Ī
2025-10-08 10:55	67.2	70.0	62.2	Ī
2025-10-14 10:57	67.2	70.7	60.7	
2025-10-14 11:02	67.9	71.5	61.5	
2025-10-14 11:07	68.9	72.2	62.0	68.6
2025-10-14 11:12	69.7	72.6	61.1	06.0
2025-10-14 11:17	67.5	70.7	61.4	
2025-10-14 11:22	69.8	72.4	62.0	
2025-10-21 10:55	70.6	74.0	63.0	
2025-10-21 11:00	71.0	73.4	62.2	
2025-10-21 11:05	68.9	71.9	61.7	70.6
2025-10-21 11:10	70.9	73.6	61.9	70.0
2025-10-21 11:15	71.0	73.5	62.6	
2025-10-21 11:20	70.7	73.4	62.6	
2025-10-28 09:29	69.9	72.4	62.9	
2025-10-28 09:34	68.8	72.4	63.0	
2025-10-28 09:39	70.4	73.0	62.6	69.7
2025-10-28 09:44	68.6	71.9	61.4	09.7
2025-10-28 09:49	70.7	74.6	62.5	
2025-10-28 09:54	69.4	72.9	63.0	

Note: A correction of +3 dB(A) was made to the free field measurements.

Noise Monitoring Data at Station CM3 (for Works Contract No. ND/2024/09)

Date and Time	L _{eq(5 min)}	L ₁₀	L ₉₀	L _{eq(30 min)}
2025-10-08 10:36	53.3	54.3	46.2	
2025-10-08 10:41	55.0	57.9	47.4	
2025-10-08 10:46	54.8	57.5	49.3	54.8
2025-10-08 10:51	56.3	57.4	47.2	34.6
2025-10-08 10:56	54.6	55.8	46.9	
2025-10-08 11:01	53.9	55.1	45.9	
2025-10-14 11:33	51.3	52.8	46.4	
2025-10-14 11:38	51.8	52.8	45.7	
2025-10-14 11:43	51.8	54.7	46.0	53.6
2025-10-14 11:48	54.9	56.9	48.0	33.0
2025-10-14 11:53	55.7	57.5	49.2	
2025-10-14 11:58	54.3	58.2	46.6	
2025-10-21 11:02	53.7	54.7	51.5	
2025-10-21 11:07	54.2	55.5	51.2	
2025-10-21 11:12	53.6	55.0	52.0	54.0
2025-10-21 11:17	54.1	55.9	52.0	34.0
2025-10-21 11:22	54.2	55.7	52.2	
2025-10-21 11:27	53.9	54.8	51.9	
2025-10-28 10:07	50.4	52.2	46.9	
2025-10-28 10:12	48.1	49.5	46.5	
2025-10-28 10:17	49.2	50.6	47.1	49.3
2025-10-28 10:22	48.8	50.1	46.9	43.3
2025-10-28 10:27	49.9	51.3	46.2	
2025-10-28 10:32	49.2	50.1	45.8	

Note: A correction of +3 dB(A) was made to the free field measurements.

Noise Monitoring Data at Station CM4 (for Works Contract No. ND/2024/09)

Date and Time	L _{eq(5 min)}	L ₁₀	L ₉₀	L _{eq(30 min)}
2025-10-08 11:09	43.5	45.0	37.9	
2025-10-08 11:14	43.2	44.8	40.4	
2025-10-08 11:19	41.5	42.6	39.7	41.7
2025-10-08 11:24	39.5	41.5	36.9	41.7
2025-10-08 11:29	40.2	41.4	37.8	
2025-10-08 11:34	41.0	42.6	38.6	
2025-10-14 13:08	45.9	46.6	39.9	
2025-10-14 13:13	40.8	42.2	38.4	
2025-10-14 13:18	44.6	48.0	39.1	45.5
2025-10-14 13:23	45.6	47.8	40.0	45.5
2025-10-14 13:28	47.9	50.3	38.2	
2025-10-14 13:33	45.7	47.2	38.8	
2025-10-21 11:42	50.4	51.6	49.0	
2025-10-21 11:47	49.3	50.4	48.0	
2025-10-21 11:52	48.8	50.0	47.4	50.2
2025-10-21 11:57	49.7	50.9	48.3	30.2
2025-10-21 12:02	51.3	52.4	49.9	
2025-10-21 12:07	51.0	52.7	48.8	
2025-10-28 10:45	47.1	48.6	45.3	
2025-10-28 10:50	47.9	49.4	44.8	
2025-10-28 10:55	46.4	47.5	45.0	46.8
2025-10-28 11:00	46.6	47.9	45.2	40.0
2025-10-28 11:05	46.7	48.2	45.0	
2025-10-28 11:10	45.6	46.6	44.3	

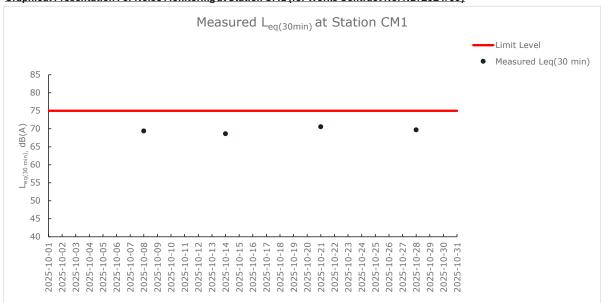
Noise Monitoring Data at Station CM9 (for Works Contract No. ND/2024/10)

Date and Time	L _{eq(5 min)}	L ₁₀	L ₉₀	L _{eq(30 min)}
2025-10-06 14:40	66.6	67.0	58.0	
2025-10-06 14:45	65.1	67.0	58.4	
2025-10-06 14:50	64.3	66.7	56.8	64.1
2025-10-06 14:55	61.9	64.8	56.5	04.1
2025-10-06 15:00	61.2	64.0	56.2	
2025-10-06 15:05	63.0	65.1	55.9	
2025-10-13 10:35	66.3	68.5	58.0	
2025-10-13 10:40	63.6	65.9	57.8	
2025-10-13 10:45	63.3	66.4	57.9	65.2
2025-10-13 10:50	64.7	68.0	57.9	03.2
2025-10-13 10:55	65.4	68.2	58.5	
2025-10-13 11:00	66.8	69.1	59.5	
2025-10-20 13:07	64.7	66.3	58.2	
2025-10-20 13:12	64.4	66.4	58.2	
2025-10-20 13:17	64.5	66.3	59.0	64.1
2025-10-20 13:22	62.0	64.5	57.6	04.1
2025-10-20 13:27	65.2	66.3	57.3	
2025-10-20 13:32	63.3	65.5	57.7	
2025-10-27 14:40	65.3	66.8	56.7	
2025-10-27 14:45	67.1	68.2	57.8	
2025-10-27 14:50	65.8	67.5	56.9	65.4
2025-10-27 14:55	65.0	67.3	58.9	05.4
2025-10-27 15:00	64.4	66.2	57.3	
2025-10-27 15:05	63.9	66.7	56.5	

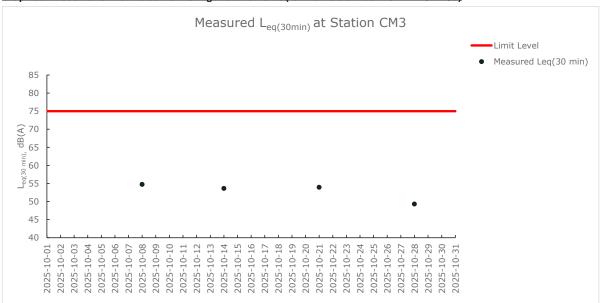
Note: A correction of +3 dB(A) was made to the free field measurements.

Noise Monitoring Data at Station CM10 (for Works Contract No. ND/2024/10)

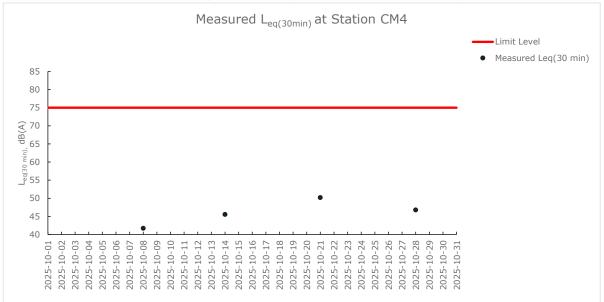
Date and Time	L _{eq(5 min)}	L ₁₀	L ₉₀	L _{eq(30 min)}
2025-10-06 13:25	62.6	63.9	55.2	
2025-10-06 13:30	58.9	60.3	53.3	
2025-10-06 13:35	60.6	62.3	56.6	60.4
2025-10-06 13:40	59.6	61.3	57.6	00.4
2025-10-06 13:45	57.5	58.6	55.7	
2025-10-06 13:50	61.2	62.2	56.6	
2025-10-13 11:16	58.1	60.2	52.4	
2025-10-13 11:21	56.8	58.4	52.8	
2025-10-13 11:26	58.8	59.2	53.6	57.9
2025-10-13 11:31	58.6	60.6	54.2	37.9
2025-10-13 11:36	57.2	58.1	54.5	
2025-10-13 11:41	57.8	59.9	54.0	
2025-10-20 11:10	58.4	60.2	51.6	
2025-10-20 11:15	53.3	54.0	51.1	
2025-10-20 11:20	56.4	58.3	52.4	55.9
2025-10-20 11:25	55.8	57.1	52.3	33.9
2025-10-20 11:30	54.7	55.7	51.9	
2025-10-20 11:35	55.0	56.6	51.1	
2025-10-27 13:55	53.4	56.4	48.9	
2025-10-27 14:00	54.1	54.9	49.1	
2025-10-27 14:05	50.1	50.8	48.4	54.2
2025-10-27 14:10	55.4	56.5	49.2	54.2
2025-10-27 14:15	55.8	56.7	49.7	
2025-10-27 14:20	54.5	55.0	49.7	

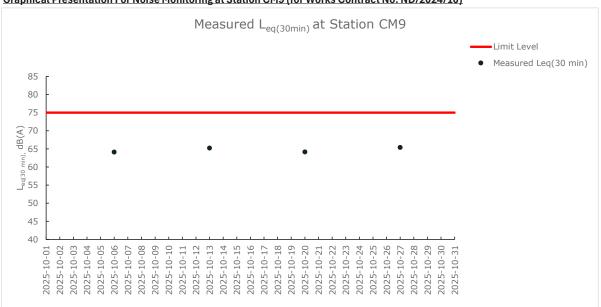

Note: A correction of +3 dB(A) was made to the free field measurements.

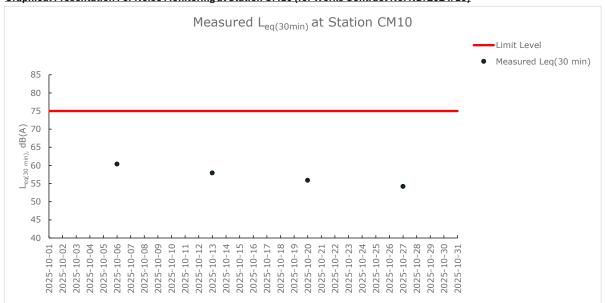
Noise Monitoring Data at Station CM11 (for Works Contract No. ND/2024/10)


Date and Time	L _{eq(5 min)}	L ₁₀	L ₉₀	L _{eq(30 min)}
2025-10-06 14:02	54.1	54.9	51.4	
2025-10-06 14:07	54.1	56.3	51.7	
2025-10-06 14:12	54.3	56.9	51.6	54.4
2025-10-06 14:17	54.7	56.2	52.3	34.4
2025-10-06 14:22	54.5	55.7	52.9	
2025-10-06 14:27	54.7	56.4	52.6	
2025-10-13 13:07	51.0	52.8	48.4	
2025-10-13 13:12	51.4	53.9	48.2	
2025-10-13 13:17	54.9	56.4	49.1	52.5
2025-10-13 13:22	51.8	53.0	49.3	32.3
2025-10-13 13:27	52.1	54.7	49.1	
2025-10-13 13:32	52.4	54.2	49.5	
2025-10-20 11:16	53.0	55.0	49.4	
2025-10-20 11:21	50.7	51.9	49.0	
2025-10-20 11:26	52.1	54.6	49.1	52.6
2025-10-20 11:31	51.5	53.9	48.5	32.0
2025-10-20 11:36	54.0	56.8	48.7	
2025-10-20 11:41	53.5	55.3	49.3	
2025-10-27 14:03	51.9	53.0	46.2	
2025-10-27 14:08	53.2	55.4	48.8	
2025-10-27 14:13	52.1	55.0	47.9	53.1
2025-10-27 14:18	53.1	55.1	48.8	33.1
2025-10-27 14:23	53.9	55.2	48.5	
2025-10-27 14:28	54.0	56.3	48.3	

Note: A correction of +3 dB(A) was made to the free field measurements.


Graphical Presentation For Noise Monitoring at Station CM1 (for Works Contract No. ND/2024/09)


Graphical Presentation For Noise Monitoring at Station CM3 (for Works Contract No. ND/2024/09)


Graphical Presentation For Noise Monitoring at Station CM4 (for Works Contract No. ND/2024/09)


Graphical Presentation For Noise Monitoring at Station CM9 (for Works Contract No. ND/2024/10)

Graphical Presentation For Noise Monitoring at Station CM10 (for Works Contract No. ND/2024/10)

Graphical Presentation For Noise Monitoring at Station CM11 (for Works Contract No. ND/2024/10)

ANNEX E4

EVENT AND ACTION PLAN FOR NOISE MONITORING

ANNEX E4 EVENT AND ACTION PLAN FOR CONSTRUCTION NOISE

Event		Act	tion	
	ET	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; and Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; and Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; and Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; and Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; and If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; and Stop the relevant portion of works as determined by the ER until the exceedance is abated.

ANNEX F1

CALIBRATION CERTIFICATES OF WATER QUALITY MONITORING EQUIPMENT

ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR K.W. FAN WORK ORDER: HK2539507

CLIENT: ENVIROTECH SERVICES CO.

ADDRESS: RM 712, 7/F, MY LOFT SUB-BATCH: 0

9 HOI WING ROAD,
TUEN MUN, N.T. HK

DATE RECEIVED:
12-Sep-2025
DATE OF ISSUE:
19-Sep-2025

GENERAL COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

This report superseded any previous report(s) with same work order number.

EQUIPMENT INFORMATION

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client.

Equipment Type: Multifunctional Meter Service Nature: Performance Check

Scope: Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.: [HORIBA]/ [U-53]
Serial No./ Equipment No.: [FXMONLLF]/ [N/A]
Date of Calibration: 19-September-2025

M

Ms. Cheng Sin Ying, May Senior Chemist - Inorganics

This report shall not be reproduced except in full without the written approval of the laboratory.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2539507

SUB-BATCH: 0

DATE OF ISSUE: 19-Sep-2025

CLIENT: ENVIROTECH SERVICES CO.

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[HORIBA]/[U-53]

Serial No./ Equipment No.:

[FXMONLLF]/[N/A]

Date of Calibration:

19-September-2025

Date of Next Calibration:

19-December-2025

PARAMETERS:

Conductivity

Method Ref: APHA (23rd edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)
146.9	156	+6.2
6667	6230	-6.6
12890	12300	-4.6
58670	57100	-2.7
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (23rd edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.41	2.34	-0.07
4.58	4.67	+0.09
7.34	7.25	-0.09
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (23rd edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.83	-0.17
7.0	6.82	-0.18
10.0	9.86	-0.14
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Man

Ms. Cheng Sin Ying, May Senior Chemist - Inorganics

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2539507

SUB-BATCH: 0

DATE OF ISSUE: 19-Sep-2025

CLIENT: ENVIROTECH SERVICES CO.

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[HORIBA]/[U-53]

Serial No./ Equipment No.:

[FXMONLLF]/[N/A]

Date of Calibration:

19-September-2025

Date of Next Calibration:

19-December-2025

PARAMETERS:

Turbidity Method Ref: APHA (23rd edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.86	
4	4.13	+3.3
40	43.3	+8.2
80	79.9	-0.1
400	420	+5.0
800	832	+4.0
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (23rd edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.75	-2.5
20	18.73	-6.4
30	27.53	-8.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Man

Ms. Cheng Sin Ying, May Senior Chemist - Inorganics

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK2539507

SUB-BATCH: 0

DATE OF ISSUE: 19-Sep-2025

CLIENT: ENVIROTECH SERVICES CO.

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[HORIBA]/[U-53]

Serial No./ Equipment No.:

[FXMONLLF]/[N/A]

Date of Calibration:

19-September-2025 Date of Next Calibration:

19-December-2025

PARAMETERS:

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	11.88	+1.4
19.5	19.31	-0.2
39.5	39.24	-0.3
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Man

Ms. Cheng Sin Ying, May Senior Chemist - Inorganics

ANNEX F2

WATER QUALITY MONITORING SCHEDULE DURING REPORTING PERIOD

Agreement No. CE 2/2025 (EP)

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Water Quality Impact Monitoring Schedule (October 2025)

O day.	Monday		lanty impact wonitoring			Saturday
Sunday	Monday	Tuesday	Wednesday	-		•
			1/Oct	2/Oct	3/Oct	4/Oct
				Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
5/Oct	6/Oct	7/Oct	8/Oct	9/Oct	10/Oct	11/Oct
	Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2e, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8	
12/Oct	13/Oct	14/Oct	15/Oct	16/Oct	17/Oct	18/Oct
		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
19/Oct	20/Oct	21/Oct	22/Oct	23/Oct	24/Oct	25/Oct
		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
26/Oct	27/Oct	28/Oct	29/Oct	30/Oct	31/Oct	
	Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8			Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2e, D2d, D7, D8		

Agreement No. CE 2/2025 (EP)

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Water Quality Impact Monitoring Schedule (October 2025)

Sunday	Monday		Wednesday	Thursday		Saturday
Sunday	Moriday	Tuesuay	•	•		
			1/Oct	2/Oct	3/Oct	4/Oct
				WQ Monitoring		WQ Monitoring
				Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'		Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'
5/Oct	6/Oct	7/Oct	8/Oct	9/Oct	10/Oct	11/Oct
	WQ Monitoring		WQ Monitoring		WQ Monitoring	
	Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'		Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'		Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'	
12/Oct	13/Oct	14/Oct	15/Oct	16/Oct	17/Oct	18/Oct
12/000	13/001	14/00	19/000	10/000	17/000	18/000
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
	Dr, Gla, Glb, Glc, Gld, Ula, Ulb/Ulb		DI', Gia, Gib, Gic, Gid, Uia, Uib/Uib		DI', Gia, Gib, Gic, Gid, Uia, Uib/Uib	
19/Oct	20/Oct	21/Oct	22/Oct	23/Oct	24/Oct	25/Oct
	WQ Monitoring		WQ Monitoring		WQ Monitoring	
	Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'		Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'		Dl', Gla, Glb, Glc, Gld, Ula, Ulb/Ulb'	
26/Oct	27/Oct	28/Oct	29/Oct	30/Oct	31/Oct	
	WQ Monitoring			WQ Monitoring		
	D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'			D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		

ANNEX F3

WATER QUALITY MONITORING RESULTS

Water Quality Monitoring Data (for Works Contract No. ND/2024/09)

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	linty	DO Sat	turation		00	Turk	oidity		SS	Current Direction	Current Velocity
(44)	Station	Weather Condition	River Condition	(hh:mm)	()	Replicate	(Surface/Middle/	('	C)	Р	Н	(p	pt)	('	%)	(m	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(nn:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:42	0.12	1st	Middle	24.6	24.6	6.7	6.7	0.1	0.1	86.0	84.8	7.2	7.1	7.2	7.4	5.0	5,2	Downstream	0.13
	028	Sunny	Calm	8:42	0.12	2nd	Middle	24.6	24.0	6.7	0.7	0.1	0.1	83.5	04.0	7.0	7.1	7.7	7.4	5.5	3.2	Downstream	0.13
	U2b'	Sunny	Calm	8:56	0.11	1st	Middle	26.1	26.1	6.7	6.7	0.1	0.1	51.7	51.7	4.2	4.2	3.3	3.4	4.4	4.4	Downstream	0.95
	020	Sunny	Calm	8:57	0.11	2nd	Middle	26.1	20.1	6.7	0.7	0.1	0.1	51.7	31.7	4.2	7.2	3.6	3.4	4.5	7.7	Downstream	0.95
	G2	Sunny	Calm	9:12	0.20	1st	Middle	26.7	26.7	6.9	6.9	0.1	0.1	98.0	98.0	7.9	7.8	12.5	12.4	3.1	2.9	Downstream	0.08
	G2	Sunny	Calm	9:12	0.20	2nd	Middle	26.7	20.7	6.9	0.5	0.1	0.1	97.9	50.0	7.8	7.0	12.2	12.4	2.8	2.5	Downstream	0.08
	D2a	Sunny	Calm	9:40	0.10	1st	Middle	27.1	27.1	7.0	7.0	0.1	0.1	34.2	34.4	2.7	2.7	3.8	3.9	15.0	14.5	Downstream	0.04
	020	Sunny	Calm	9:40	0.10	2nd	Middle	27.1	27.12	7.0	7.0	0.1	0.1	34.5	5	2.7	2.17	3.9	5.5	13.9	15	Downstream	0.04
2025-10-02	D2b'	Sunny	Calm	10:33	0.41	1st	Middle	30.2	30.2	7.4	7.4	0.7	0.7	58.2	55.0	4.4	4.1	15.7	16.2	28.8	29.5	Downstream	0.06
2025 10 02	525	Sunny	Calm	10:34	0.41	2nd	Middle	30.2	30.2	7.4	7	0.7	0.7	51.8	55.0	3.9		16.7	10.2	30.2	25.0	Downstream	0.06
	D2c	Sunny	Calm	10:44	0.22	1st	Middle	27.2	27.1	7.3	7.3	0.1	0.1	26.2	29.1	2.1	2.5	18.7	17.8	20.9	20.1	Downstream	0.24
	520	Sunny	Calm	10:44	0.22	2nd	Middle	27.1	27.12	7.3	7.13	0.1	0.1	31.9	25.1	2.8	2.13	16.8	17.0	19.3	20.1	Downstream	0.24
	D2d	Sunny	Calm	9:23	0.28	1st	Middle	26.8	26.8	7.0	7.0	0.1	0.1	109.2	109.0	8.7	8.7	8.5	8.3	8.7	8.9	Downstream	0.50
	020	Sunny	Calm	9:23	0.28	2nd	Middle	26.8	20.0	7.0	7.0	0.1	0.1	108.8	105.0	8.7	0.7	8.2	0.5	9.2	0.5	Downstream	0.50
	D7	Sunny	Calm	10:01	0.18	1st	Middle	27.0	27.0	6.8	6.8	0.1	0.1	9.6	9.2	0.8	0.7	3.7	3.5	1.4	2.6	Downstream	0.08
		Sunny	Calm	10:01	0.18	2nd	Middle	27.0	27.10	6.8	0.0	0.1	0.1	8.8	3.2	0.7	0.7	3.2	5.5	3.9	2.0	Downstream	0.08
	D8	Sunny	Calm	10:15	0.18	1st	Middle	27.4	27.4	7.4	7.4	0.2	0.2	34.7	33.3	2.7	2.6	5.2	5.5	8.2	9.5	Downstream	0.04
	50	Sunny	Calm	10:15	0.18	2nd	Middle	27.4	27.17	7.4	, . .	0.2	J.2	31.9	55.5	2.5	2.0	5.9	5.5	10.8	J.5	Downstream	0.04

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	linty	DO Sat	uration	D	0	Turb	idity	S	S	Current Direction	Current Velocity
(Station	Weather Condition	River Condition	(hh)	()	Replicate	(Surface/Middle/	('	°C)	F	Н	(r	pt)	(0	%)	(mg	g/L)	(N	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-mm-dd)		condition	Contaction	(hh:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:30	0.11	1st	Middle	24.5	24.5	6.2	6.2	0.1	0.1	94.7	92.6	7.9	7.7	1.8	1.0	5.2	5.6	Downstream	0.19
	028	Sunny	Calm	8:31	0.11	2nd	Middle	24.5	24.3	6.1	0.2	0.1	0.1	90.5	92.0	7.6	7.7	1.9	1.0	6.1	5.0	Downstream	0.19
	U2b'	Sunny	Calm	8:44	0.10	1st	Middle	25.8	25.8	6.3	6.3	0.1	0.1	49.6	49.6	4.0	4.0	2.7	2.9	4.9	4.8	Downstream	0.68
	020	Sunny	Calm	8:45	0.10	2nd	Middle	25.8	23.0	6.3	0.5	0.1	0.1	49.5	45.0	4.0	4.0	3.0	2.5	4.6	4.0	Downstream	0.68
	G2	Sunny	Calm	8:59	0.55	1st	Middle	25.9	25.9	6.6	6.6	0.1	0.1	95.9	95.9	7.8	7.8	5.9	6.0	5.2	5.1	Downstream	0.15
	G2	Sunny	Calm	8:59	0.55	2nd	Middle	25.9	23.3	6.6	0.0	0.1	0.1	95.9	93.9	7.8	7.0	6.1	0.0	5.1	3.1	Downstream	0.15
	D2a	Sunny	Calm	9:19	0.10	1st	Middle	26.4	26.4	7.0	7.0	0.1	0.1	32.8	33.1	2.6	2.7	4.0	4.1	3.0	3.3	Downstream	0.04
	DZu	Sunny	Calm	9:19	0.10	2nd	Middle	26.4	20.4	7.0	7.0	0.1	0.1	33.3	33.1	2.7	2.7	4.2	7.1	3.5	5.5	Downstream	0.04
2025-10-04	D2b'	Sunny	Calm	10:06	0.40	1st	Middle	30.0	30.0	7.5	7.5	1.3	1.3	102.1	101.7	7.7	7.6	14.0	14.2	14.1	13.0	Downstream	0.08
2023 10 04	020	Sunny	Calm	10:06	0.40	2nd	Middle	30.1	30.0	7.5	7.5	1.3	1.3	101.3	101.7	7.6	7.0	14.4	17.2	12.0	15.0	Downstream	0.08
	D2c	Sunny	Calm	10:16	0.60	1st	Middle	28.0	28.0	7.1	7.1	0.3	0.3	22.3	22.6	1.7	1.8	20.9	20,4	17.0	18.1	Downstream	0.41
	DZC	Sunny	Calm	10:16	0.60	2nd	Middle	28.0	20.0	7.1	7.1	0.3	0.5	22.9	22.0	1.8	1.0	19.9	20.4	19.3	10.1	Downstream	0.41
	D2d	Sunny	Calm	9:08	0.68	1st	Middle	26.6	26.6	6.6	6.6	0.2	0.2	75.5	76.1	6.1	6.1	14.7	14.5	14.9	13.9	Downstream	0.05
	520	Sunny	Calm	9:08	0.68	2nd	Middle	26.6	20.0	6.6	0.0	0.2	0.2	76.6	70.1	6.1	0.1	14.3	1113	12.9	10.0	Downstream	0.05
	D7	Sunny	Calm	9:33	0.10	1st	Middle	26.3	26.3	6.7	6.7	0.1	0.1	12.3	11.4	1.0	0.9	3.0	3.1	2.9	2.6	Downstream	0.08
	5,	Sunny	Calm	9:34	0.10	2nd	Middle	26.3	25.5	6.7	5.7	0.1	J.1	10.5	****	0.9	0.5	3.1	3.1	2.4	2.0	Downstream	0.08
	D8	Sunny	Calm	9:44	0.15	1st	Middle	27.2	27.2	7.4	7.4	0.2	0.2	107.6	107.7	8.5	8.5	7.3	7.3	5.5	5.3	Downstream	0.11
	56	Sunny	Calm	9:45	0.15	2nd	Middle	27.2	27.2	7.4	7.4	0.2	0.2	107.7	107.7	8.5	0.5	7.3	/.3	5.1	5.5	Downstream	0.11

Remark

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_		Sal	inty	DO Sat	uration	D	0	Turt	idity	9	SS	Current Direction	Current Velocity
(Station	Weather Condition	River Condition	(hh:mm)	()	Replicate	(Surface/Middle/	('	°C)	P	Н	(р	pt)	(%	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	condition	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:36	0.11	1st	Middle	24.7	24.7	6.6	6.6	0.1	0.1	97.6	97.3	8.1	8.1	5.0	5.3	7.0	5.2	Downstream	0.19
	024	Sunny	Calm	8:36	0.11	2nd	Middle	24.7	24.7	6.6	0.0	0.1	0.1	97.0	37.3	8.1	0.1	5.6	5.5	3.5	3.2	Downstream	0.19
	U2b'	Sunny	Calm	8:53	0.10	1st	Middle	26.1	26.1	6.9	6.9	0.1	0.1	48.5	48.5	3.9	3.9	1.2	1.2	3.1	3.9	Downstream	0.68
	020	Sunny	Calm	8:53	0.10	2nd	Middle	26.1	20.1	6.9	0.5	0.1	0.1	48.5	40.5	3.9	5.5	1.2	1.2	4.8	3.5	Downstream	0.68
	G2	Sunny	Calm	9:08	0.50	1st	Middle	26.5	26.5	7.1	7.1	0.1	0.1	46.9	46.2	3.8	3.7	13.2	13.1	5.7	6.0	Downstream	0.15
	02	Sunny	Calm	9:09	0.55	2nd	Middle	26.5	20.5	7.1	7.1	0.1	0.1	45.4	40.2	3.7	5.7	12.9	15.1	6.3	0.0	Downstream	0.15
	D2a	Sunny	Calm	9:36	0.10	1st	Middle	26.9	26.9	7.1	7.1	0.1	0.1	26.9	26.5	2.2	2.1	5.2	5.5	5.4	10.8	Downstream	0.04
	DZu	Sunny	Calm	9:36	0.10	2nd	Middle	26.9	20.5	7.1	7.1	0.1	0.1	26.1	20.5	2.1	2.1	5.8	5.5	16.3	10.0	Downstream	0.04
2025-10-06	D2b'	Sunny	Calm	10:24	0.40	1st	Middle	28.1	28.1	7.4	7.4	1.1	1.1	50.9	50.8	4.0	4.0	20.9	21.7	18.1	10.9	Downstream	0.08
2025 10 00	020	Sunny	Calm	10:24	0.40	2nd	Middle	28.1	20.1	7.4	7.4	1.0	1.1	50.7	30.0	3.9	4.0	22.5	21.7	3.8	10.5	Downstream	0.08
	D2c	Sunny	Calm	10:33	0.60	1st	Middle	28.5	28.5	7.1	7.1	0.7	0.7	108.0	108.0	8.4	8.4	9.8	9.8	9.5	9.1	Downstream	0.41
	DEC	Sunny	Calm	10:34	0.60	2nd	Middle	28.5	20.5	7.1	7.12	0.7	0.7	107.9	100.0	8.4	0.1	9.9	5.0	8.8	3.1	Downstream	0.41
	D2d	Sunny	Calm	9:21	0.68	1st	Middle	26.6	26.6	7.2	7.2	0.2	0.2	110.5	110.4	8.9	8.9	25.8	25.1	5.9	5.7	Downstream	0.05
	DZu	Sunny	Calm	9:21	0.68	2nd	Middle	26.6	20.0	7.2	7.2	0.2	0.2	110.2	110.4	8.8	0.5	24.3	23.1	5.6	3.7	Downstream	0.05
	D7	Sunny	Calm	9:53	0.10	1st	Middle	26.9	26.9	6.9	6.9	0.1	0.1	10.9	10.1	0.9	0.8	0.9	1.0	1.9	2.0	Downstream	0.08
	<i>D7</i>	Sunny	Calm	9:53	0.10	2nd	Middle	26.9	20.5	6.9	0.5	0.1	0.1	9.3	10.1	0.7	0.0	1.1	1.0	2.1	2.0	Downstream	0.08
	D8	Sunny	Calm	10:08	0.15	1st	Middle	27.0	27.1	7.4	7.4	0.2	0.2	22.3	22.1	1.8	1.8	11.7	12.0	3.6	4.1	Downstream	0.11
	50	Sunny	Calm	10:08	0.15	2nd	Middle	27.2	27.1	7.4	7.4	0.2	0.2	21.9	22.1	1.7	1.0	12.2	12.0	4.5		Downstream	0.11

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	linty	DO Sat	uration	C	0	Turk	idity	9	SS	Current Direction	Current Velocity
	Station	Weather	River			Replicate	(Surface/Middle/	(°C)	F	Н	1)	ppt)	(0	%)	(mg	g/L)	(N	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(hh:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:26	0.11	1st	Middle	24.6	24.6	6.3	6.3	0.1	0.1	87.3	88.0	7.3	7.3	12.3	12.3	12.3	11.9	Downstream	0.15
	UZa	Sunny	Calm	8:27	0.11	2nd	Middle	24.6	24.0	6.3	0.3	0.1	0.1	88.6	00.0	7.4	7.3	12.2	12.3	11.4	11.9	Downstream	0.15
	U2b'	Sunny	Calm	8:41	0.09	1st	Middle	26.1	26.1	6.9	6.9	0.1	0.1	45.2	45.2	3.7	3.7	2.4	2.5	2.8	2.5	Downstream	0.87
	020	Sunny	Calm	8:41	0.09	2nd	Middle	26.1	20.1	6.9	0.5	0.1	0.1	45.2	43.2	3.7	3.7	2.6	2.5	2.2	2.5	Downstream	0.87
	G2	Sunny	Calm	9:03	0.07	1st	Middle	27.2	27.3	7.2	7.2	0.1	0.1	88.4	87.9	7.0	7.0	1.7	1 9	1.7	1.9	Downstream	0.13
	0.2	Sunny	Calm	9:03	0.07	2nd	Middle	27.3	27.5	7.2	7.12	0.1	0.12	87.3	07.13	6.9	7.10	2.1	2.5	2.2	2.5	Downstream	0.13
	D2a	Sunny	Calm	9:29	0.08	1st	Middle	26.9	26.9	7.0	7.0	0.1	0.1	39.8	39.4	3.2	3.1	2.7	2.7	10.2	9.1	Downstream	0.07
		Sunny	Calm	9:29	0.08	2nd	Middle	26.9		7.0		0.1		38.9		3.1		2.7		8.0		Downstream	0.07
2025-10-08	D2b'	Sunny	Calm	10:10	0.10	1st	Middle	30.1	30.6	7.6	7.6	0.9	0.9	76.8	76.0	5.8	5.7	16.5	16.5	11.2	11.6	Downstream	0.09
		Sunny	Calm	10:10	0.10	2nd	Middle	31.1		7.6		0.9		75.1		5.6		16.5		12.1		Downstream	0.09
	D2c	Sunny	Calm	10:19	0.50	1st	Middle	27.3	27.3	7.3	7.3	0.2	0.2	26.5	26.6	2.1	2.1	19.3	18.7	13.0	12.7	Downstream	0.47
		Sunny	Calm	10:19	0.50	2nd	Middle	27.3		7.3		0.2		26.6		2.1		18.1		12.3		Downstream	0.47
	D2d	Sunny	Calm	9:13	0.23	1st	Middle	27.1	27.1	7.0	7.0	0.1	0.1	108.4	108.3	8.6	8.6	15.7	16.1	10.4	5.8	Downstream	0.08
		Sunny	Calm	9:13	0.23	2nd	Middle	27.1		7.0		0.1		108.2		8.6		16.4		1.2		Downstream	0.08
	D7	Sunny	Calm	9:45	0.10	1st	Middle	26.9	26.9	6.8	6.8	0.1	0.1	11.8	11.4	0.9	0.9	4.3	4.2	8.4	4.7	Downstream	0.06
		Sunny	Calm	9:46	0.10	2nd	Middle	26.9		6.8	2.0	0.1	3.1	11.0		0.9	2.15	4.0		0.9		Downstream	0.06
	D8	Sunny	Calm	9:55	0.12	1st	Middle	27.5	27.5	7.4	7.4	0.2	0.2	106.3	106.4	8.4	8.4	6.2	6.4	1.8	1.3	Downstream	0.03
		Sunny	Calm	9:55	0.12	2nd	Middle	27.5		7.4		0.2		106.4		8.4		6.5		0.8		Downstream	0.03

Remark

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_		Sal	inty	DO Sat	uration	D	0	Turt	idity	9	SS	Current Direction	Current Velocity
(Station	Weather Condition	River Condition	(hh:mm)	()	Replicate	(Surface/Middle/	('	°C)	P	Н	(p	pt)	(%	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	condition	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:42	0.11	1st	Middle	24.6	24.6	6.0	6.0	0.1	0.1	107.1	103.7	8.9	8.6	1.9	2.0	6.4	5.9	Downstream	0.15
	020	Sunny	Calm	8:42	0.11	2nd	Middle	24.6	24.0	6.0	0.0	0.1	0.1	100.2	105.7	8.3	0.0	2.0	2.0	5.5	3.5	Downstream	0.15
	U2b'	Sunny	Calm	8:59	0.08	1st	Middle	26.1	26.1	6.2	6.2	0.1	0.1	52.1	56.2	4.2	4.5	3.4	3.2	4.4	4.2	Downstream	1.19
	020	Sunny	Calm	8:59	0.08	2nd	Middle	26.1	20.1	6.2	0.2	0.1	0.1	60.2	30.2	4.9	7.5	3.1	3.2	4.0	7.2	Downstream	1.19
	G2	Sunny	Calm	9:16	0.08	1st	Middle	26.9	26.9	6.6	6.6	0.1	0.1	79.5	79.6	6.3	6.3	2.3	2.3	3.2	2.9	Downstream	0.01
	O2	Sunny	Calm	9:16	0.08	2nd	Middle	26.9	20.5	6.6	0.0	0.1	0.1	79.6	75.0	6.3	0.5	2.2	2.5	2.6	2.3	Downstream	0.01
	D2a	Sunny	Calm	9:44	0.08	1st	Middle	27.1	27.1	7.0	7.0	0.1	0.1	26.6	26.6	2.1	2.1	8.8	8.7	3.7	4.1	Downstream	0.02
	DZu	Sunny	Calm	9:44	0.08	2nd	Middle	27.1	27.1	7.0	7.0	0.1	0.1	26.5	20.0	2.1	2.1	8.6	0.7	4.4	7.1	Downstream	0.02
2025-10-10	D2b'	Sunny	Calm	10:50	0.10	1st	Middle	30.8	30.9	7.7	7.7	0.9	0.9	84.1	85.1	6.2	6.3	19.5	18.8	13.4	13.4	Downstream	0.19
2025 10 10	020	Sunny	Calm	10:50	0.10	2nd	Middle	30.9	30.5	7.7	7.7	0.9	0.5	86.0	05.1	6.4	0.5	18.0	10.0	13.5	15.4	Downstream	0.19
	D2c	Sunny	Calm	11:05	0.40	1st	Middle	27.6	27.6	7.3	7.3	0.1	0.1	22.8	22.9	1.8	1.8	14.8	15.3	11.8	11.6	Downstream	0.21
	DEC	Sunny	Calm	11:05	0.40	2nd	Middle	27.5	27.0	7.3	7.13	0.1	0.12	23.0	22.0	1.8	1.0	15.7	15.5	11.4	11.0	Downstream	0.21
	D2d	Sunny	Calm	9:31	0.28	1st	Middle	28.0	27.9	7.3	7.3	0.2	0.2	60.9	60.8	4.8	4.8	16.3	15.6	13.1	14.1	Downstream	0.14
	DZu	Sunny	Calm	9:31	0.28	2nd	Middle	27.9	27.5	7.3	7.5	0.2	0.2	60.7	00.0	4.8	4.0	14.8	13.0	15.2	14.1	Downstream	0.14
	D7	Sunny	Calm	10:18	0.10	1st	Middle	27.1	27.0	6.8	6.8	0.1	0.1	10.0	10.3	0.8	0.8	1.0	1.1	1.8	1.8	Downstream	0.07
	υ,	Sunny	Calm	10:19	0.10	2nd	Middle	27.0	27.0	6.8	0.0	0.1	0.1	10.5	10.5	0.8	0.0	1.2	1.1	1.8	1.0	Downstream	0.07
	D8	Sunny	Calm	10:32	0.11	1st	Middle	27.8	27.8	7.4	7.4	0.2	0.2	22.5	21.2	1.8	1.7	16.5	16.3	3.2	4.3	Downstream	0.11
	50	Sunny	Calm	10:32	0.11	2nd	Middle	27.8	27.0	7.4	7.17	0.2	5.2	19.8		1.6	1.7	16.0	13.5	5.4	5	Downstream	0.11

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	linty	DO Sat	uration	D	0	Turt	idity	S	S	Current Direction	Current Velocity
	Station	Weather	River			Replicate	(Surface/Middle/		°C)	P	Н	(r	pt)	(0	%)	(mg]/L)	(N	TU)	(mg]/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(hh:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:40	0.10	1st	Middle	24.8	24.8	6.9	6.9	0.1	0.1	89.9	89.9	7.5	7.5	6.8	6.8	3.4	3.8	Downstream	0.20
	UZa	Sunny	Calm	8:41	0.10	2nd	Middle	24.8	24.0	6.9	0.9	0.1	0.1	89.9	09.9	7.5	7.5	6.8	0.0	4.1	3.0	Downstream	0.20
	U2b'	Sunny	Calm	8:57	0.07	1st	Middle	26.2	26.2	7.2	7.2	0.0	0.0	39.5	38.6	3.2	2.1	4.9	4.6	3.0	3.8	Downstream	0.77
	020	Sunny	Calm	8:58	0.07	2nd	Middle	26.2	20.2	7.2	7.2	0.0	0.0	37.7	30.0	3.1	3.1	4.3	4.0	4.5	5.0	Downstream	0.77
	G2	Sunny	Calm	9:16	0.11	1st	Middle	27.1	27.1	7.2	7.2	0.1	0.1	80.0	80.2	6.4	6.4	4.8	4.5	1.5	1.2	Downstream	0.02
	0.2	Sunny	Calm	9:17	0.11	2nd	Middle	27.1	27.12	7.2	7.12	0.1	0.1	80.3	00.2	6.4	0.1	4.2	5	0.8	2.2	Downstream	0.02
	D2a	Sunny	Calm	9:38	0.07	1st	Middle	27.2	27.2	7.0	7.0	0.1	0.1	24.1	23.8	1.9	1.9	1.5	1.3	13.5	15.0	Downstream	0.04
	520	Sunny	Calm	9:39	0.07	2nd	Middle	27.2	27.2	7.0	7.0	0.1	0.1	23.5	25.0	1.9	2.5	1.2	1.5	16.6	15.0	Downstream	0.04
2025-10-14	D2b'	Sunny	Calm	10:34	0.17	1st	Middle	29.8	29.8	7.5	7.5	0.9	0.9	59.3	59.1	4.5	4.5	6.7	6.8	8.6	8.2	Downstream	0.20
2023 10 11	020	Sunny	Calm	10:35	0.17	2nd	Middle	29.9	25.0	7.6	7.5	0.9	0.5	58.8	33.1	4.4	5	6.8	0.0	7.8	0.2	Downstream	0.20
	D2c	Sunny	Calm	10;43	0.30	1st	Middle	27.5	27.5	7.4	7.4	0.1	0.1	32.0	31.0	2.5	2.4	17.8	17.0	12.4	12.7	Downstream	0.31
		Sunny	Calm	10:44	0.30	2nd	Middle	27.5		7.4		0.1	*	30.0		2.4		16.2		12.9		Downstream	0.31
	D2d	Sunny	Calm	9:25	0.33	1st	Middle	27.5	27.5	6.9	6.9	0.1	0.1	102.7	102.6	8.1	8.1	9.1	9.3	6.1	6.8	Downstream	0.01
		Sunny	Calm	9:26	0.33	2nd	Middle	27.5		6.9		0.1	*	102.4		8.1		9.6		7.5		Downstream	0.01
	D7	Sunny	Calm	10:05	0.10	1st	Middle	27.0	27.0	6.8	6.8	0.1	0.1	8.9	8.6	0.7	0.7	2.2	2.4	2.2	1.9	Downstream	0.05
		Sunny	Calm	10:06	0.10	2nd	Middle	27.0		6.8	2.0	0.1	3.1	8.3	2.0	0.7	,	2.6		1.7	2.5	Downstream	0.05
	D8	Sunny	Calm	10:19	0.18	1st	Middle	27.7	27.7	7.4	7.4	0.2	0.2	105.2	105.1	8.3	8.3	8.2	8.5	1.6	1.7	Downstream	0.01
	50	Sunny	Calm	10:20	0.18	2nd	Middle	27.7		7.4		0.2	3.2	105.0	223.1	8.3	2.0	8.8	2.5	1.9	,	Downstream	0.01

Remark

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sal	inty	DO Sat	uration	D	0	Turb	idity	9	S	Current Direction	Current Velocity
(Station	Weather Condition	River Condition	(hh:mm)	()	Replicate	(Surface/Middle/	('	'C)	P	п	(р	pt)	(%	%)	(mg	g/L)	(N.	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	condition	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:45	0.10	1st	Middle	24.7	24.7	6.4	6.4	0.1	0.1	84.1	83.1	7.0	6.9	5.4	5.5	3.8	3.6	Downstream	0.20
	024	Sunny	Calm	8:45	0.10	2nd	Middle	24.7	24.7	6.4	0.4	0.1	0.1	82.0	05.1	6.8	0.5	5.6	5.5	3.4	5.0	Downstream	0.20
	U2b'	Sunny	Calm	8:58	0.07	1st	Middle	26.2	26.2	6.6	6.6	0.1	0.1	34.0	33.6	2.7	2.7	3.6	3.7	4.5	4.7	Downstream	0.62
	020	Sunny	Calm	8:59	0.07	2nd	Middle	26.2	20.2	6.6	0.0	0.1	0.1	33.1	33.0	2.7	2.7	3.9	3.7	4.9	4.7	Downstream	0.62
	G2	Sunny	Calm	9:16	0.36	1st	Middle	26.7	26.7	6.9	6.9	0.1	0.1	70.4	71.0	5.6	5.7	3.3	3.3	2.8	4.3	Downstream	0.02
	02	Sunny	Calm	9:16	0.36	2nd	Middle	26.7	20.7	6.9	0.5	0.1	0.1	71.5	71.0	5.7	5.7	3.4	5.5	5.8	7	Downstream	0.02
	D2a	Sunny	Calm	9:40	0.10	1st	Middle	27.0	27.0	7.0	7.0	0.1	0.1	27.2	27.2	2.2	2.2	3.5	3.6	9.1	10.0	Downstream	0.05
	DZu	Sunny	Calm	9:41	0.10	2nd	Middle	27.0	27.0	7.0	7.0	0.1	0.1	27.1	27.2	2.2	2.2	3.6	5.0	10.8	10.0	Downstream	0.05
2025-10-16	D2b'	Sunny	Calm	10:57	0.33	1st	Middle	29.6	29.6	7.5	7.5	1.1	1.1	51.0	51.0	3.9	3.9	14.3	14.6	5.7	6.7	Downstream	0.31
2023-10-10	D20	Sunny	Calm	10:58	0.33	2nd	Middle	29.6	25.0	7.5	7.5	1.1	1.1	50.9	31.0	3.9	3.9	14.8	14.0	7.6	0.7	Downstream	0.31
	D2c	Sunny	Calm	11:08	0.38	1st	Middle	27.4	27.4	7.3	7.3	0.1	0.1	24.5	25.5	1.9	2.0	11.4	11.7	9.4	11.4	Downstream	0.27
	DZC	Sunny	Calm	11:10	0.38	2nd	Middle	27.4	27.4	7.3	7.5	0.1	0.1	26.5	25.5	2.1	2.0	11.9	11.7	13.5	11.7	Downstream	0.27
	D2d	Sunny	Calm	9:26	0.62	1st	Middle	27.4	27.4	7.3	7.3	0.1	0.1	73.3	71.6	5.8	5.7	7.5	8.0	7.0	7.0	Downstream	0.01
	DZu	Sunny	Calm	9:27	0.62	2nd	Middle	27.4	27.4	7.3	7.5	0.1	0.1	69.9	71.0	5.5	5.7	8.5	0.0	7.0	7.0	Downstream	0.01
	D7	Sunny	Calm	10:04	0.07	1st	Middle	26.7	26.7	6.8	6.8	0.1	0.1	12.7	12.2	1.0	1.0	3.0	3.2	1.3	1.5	Downstream	0.04
	J ,	Sunny	Calm	10:04	0.07	2nd	Middle	26.7	20.7	6.8	0.0	0.1	0.1	11.7	12.2	0.9	1.0	3.3	5.2	1.7	1.5	Downstream	0.04
	D8	Sunny	Calm	10:33	0.12	1st	Middle	27.6	27.6	7.5	7.5	0.2	0.2	103.2	103.9	8.1	8.2	5.8	5.8	2.8	3.0	Downstream	0.01
	D0	Sunny	Calm	10:35	0.12	2nd	Middle	27.6	27.0	7.5	7.5	0.2	0.2	104.6	103.9	8.3	0.2	5.9	5.0	3.2	5.0	Downstream	0.01

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	linty	DO Sat	uration	C	00	Turl	oidity	9	S	Current Direction	Current Velocity
	Station	Weather	River			Replicate			°C)	F	Н	(1	ppt)	(4	%)	(mg	g/L)	(N	TU)	(mg]/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(hh:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:30	0.11	1st	Middle	24.6	24.6	6.6	6.6	0.1	0.1	85.1	84.0	7.1	7.0	8.0	7.7	3.5	2.9	Downstream	0.18
	UZa	Sunny	Calm	8:31	0.11	2nd	Middle	24.6	24.0	6.6	0.0	0.1	0.1	82.9	04.0	6.9	7.0	7.4	7.7	2.2	2.9	Downstream	0.18
	U2b'	Sunny	Calm	8:48	0.08	1st	Middle	26.2	26.2	6.7	6.7	0.1	0.1	22.9	23.3	1.9	1.9	3.6	3.6	4.3	2.9	Downstream	0.83
	020	Sunny	Calm	8:48	0.08	2nd	Middle	26.2	20.2	6.7	0.7	0.1	0.1	23.7	23.3	1.9	1.5	3.7	3.0	1.5	2.5	Downstream	0.83
	G2	Sunny	Calm	9:05	0.40	1st	Middle	26.2	26.2	6.6	6.6	0.1	0.1	54.5	54.2	4.4	4.4	3.3	3.3	1.7	1.9	Downstream	0.06
	02	Sunny	Calm	9:06	0.40	2nd	Middle	26.2	20.2	6.6	0.0	0.1	0.12	53.9	5112	4.4		3.2	5.5	2.0	2.5	Downstream	0.06
	D2a	Sunny	Calm	9:29	0.07	1st	Middle	27.0	26.9	7.1	7.1	0.1	0.1	25.7	25.0	2.1	2.0	1.7	1.6	12.0	9.4	Downstream	0.02
	020	Sunny	Calm	9:29	0.07	2nd	Middle	26.9	20.5	7.1	7.12	0.1	0.12	24.3	25.0	1.9	2.10	1.6	1.0	6.8	J	Downstream	0.02
2025-10-18	D2b'	Sunny	Calm	10:23	0.42	1st	Middle	30.0	30.0	7.4	7.4	1.2	1.2	46.7	45.9	3.5	3.5	24.1	24.0	11.0	11.5	Downstream	0.15
		Sunny	Calm	10:24	0.42	2nd	Middle	30.0		7.4		1.2		45.1		3.4		23.9		12.0		Downstream	0.15
	D2c	Sunny	Calm	10:33	0.82	1st	Middle	30.0	30.1	7.3	7.3	1.6	1.6	40.7	38.9	3.0	2.9	19.4	19.5	12.0	12.5	Downstream	0.22
		Sunny	Calm	10:34	0.82	2nd	Middle	30.1		7.3		1.6		37.1		2.8		19.5		13.0		Downstream	0.22
	D2d	Sunny	Calm	9:17	0.63	1st	Middle	27.1	27.1	7.3	7.3	0.1	0.1	107.5	107.5	8.5	8.5	9.5	8.9	4.9	4.6	Downstream	0.02
		Sunny	Calm	9:17	0.63	2nd	Middle	27.2		7.3		0.1		107.4		8.5		8.3	***	4.3		Downstream	0.02
	D7	Sunny	Calm	9:52	0.09	1st	Middle	26.8	26.8	6.9	6.9	0.1	0.1	14.2	13.5	1.1	1.1	5.7	6.0	1.1	1.1	Downstream	0.09
		Sunny	Calm	9:52	0.09	2nd	Middle	26.8	_5.0	6.9		0.1	3.12	12.8	23.5	1.0	-112	6.3	2.0	1.0		Downstream	0.09
	D8	Sunny	Calm	10:04	0.12	1st	Middle	27.6	27.7	7.5	7.5	0.2	0.2	23.7	23.1	1.9	1.8	7.6	7.9	3.3	2.9	Downstream	0.02
	30	Sunny	Calm	10:05	0.12	2nd	Middle	27.8		7.5		0.2	3.2	22.4		1.7	0	8.2		2.4	,	Downstream	0.02

Remark

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	inty	DO Sat	uration	D	00	Turt	idity	9	SS	Current Direction	Current Velocity
(Station	Weather Condition	River Condition	(hh:mm)	()	Replicate	(Surface/Middle/	('	°C)	F	Н	(p	pt)	(0	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	condition	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:37	0.12	1st	Middle	23.3	23.3	6.6	6,6	0.1	0.1	100.5	98.0	8.6	8.4	8.8	8.8	1.0	2.0	Downstream	0.15
	024	Sunny	Calm	8:37	0.12	2nd	Middle	23.3	25.5	6.6	0.0	0.1	0.1	95.5	50.0	8.2	0.4	8.8	0.0	2.9	2.0	Downstream	0.15
	U2b'	Sunny	Calm	8:52	0.08	1st	Middle	23.8	23.8	6.6	6.6	0.1	0.1	32.8	31.5	2.8	2.7	6.9	6.6	3.2	3.5	Downstream	0.45
	020	Sunny	Calm	8:53	0.08	2nd	Middle	23.8	25.0	6.5	0.0	0.1	0.1	30.2	31.3	2.6	2.7	6.3	0.0	3.7	5.5	Downstream	0.45
	G2	Sunny	Calm	9:13	0.20	1st	Middle	23.6	23.6	6.7	6.7	0.1	0.1	63.9	64.0	5.4	5.4	5.8	5.9	1.9	3.6	Downstream	0.05
	02	Sunny	Calm	9:14	0.20	2nd	Middle	23.6	25.0	6.7	0.7	0.1	0.1	64.1	04.0	5.4	3.4	6.0	5.5	5.2	5.0	Downstream	0.05
	D2a	Sunny	Calm	9:42	0.08	1st	Middle	23.0	23.0	7.1	7.1	0.1	0.1	28.8	28.9	2.5	2.5	7.2	7.1	1.5	4.0	Downstream	0.04
	DZu	Sunny	Calm	9:43	0.08	2nd	Middle	23.0	25.0	7.1	/.1	0.1	0.1	28.9	20.5	2.5	2.5	6.9	7.1	6.4	4.0	Downstream	0.04
2025-10-21	D2b'	Sunny	Calm	10:30	0.32	1st	Middle	23.1	23.1	7.5	7.5	1.3	13	56.0	56.4	4.8	4.8	15.9	15.5	8.3	8.6	Downstream	0.14
2025 10 21	020	Sunny	Calm	10:31	0.32	2nd	Middle	23.1	25.1	7.5	7.5	1.3	1.5	56.8	30.4	4.8	4.0	15.1	13.5	8.9	0.0	Downstream	0.14
	D2c	Sunny	Calm	10;40	1.00	1st	Middle	26.3	26.3	7.6	7.5	1.5	1.5	102.5	102.8	8.2	8.2	33.3	33.5	17.0	14.5	Downstream	0.10
	DEC	Sunny	Calm	10:40	1.00	2nd	Middle	26.3	20.5	7.5	7.15	1.5	1.0	103.0	102.0	8.2	O.L	33.7	55.5	12.0	1110	Downstream	0.10
	D2d	Sunny	Calm	9:24	0.56	1st	Middle	23.6	23.6	6.8	6.7	0.1	0.1	108.0	107.9	9.2	9.1	13.9	14.5	17.0	14.0	Downstream	0.01
	DZu	Sunny	Calm	9:24	0.56	2nd	Middle	23.6	25.0	6.7	0.7	0.1	0.1	107.7	107.5	9.1	5.1	15.1	14.5	11.0	14.0	Downstream	0.01
	D7	Sunny	Calm	10:00	0.08	1st	Middle	23.4	23.4	6.8	6.8	0.1	0.1	10.5	10.1	0.9	0.9	3.8	3.5	1.7	1.7	Downstream	0.02
	<i>D7</i>	Sunny	Calm	10:00	0.08	2nd	Middle	23.4	25.4	6.8	0.0	0.1	0.1	9.6	10.1	0.8	0.5	3.2	5.5	1.6	1.7	Downstream	0.02
	D8	Sunny	Calm	10:13	0.20	1st	Middle	25.1	25.1	7.5	7.5	0.2	0.2	102.6	102.7	8.5	8.5	7.9	8.5	2.4	2.0	Downstream	0.01
	56	Sunny	Calm	10:14	0.20	2nd	Middle	25.2	23.1	7.5	7.5	0.2	0.2	102.7	102.7	8.5	0.5	9.2	5.5	1.6	2.0	Downstream	0.01

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	inty	DO Sat	uration	D	0	Turk	idity	S	s	Current Direction	Current Velocity
	Station	Weather	River			Replicate	(Surface/Middle/		°C)	P	Н	(r	pt)	(0	%)	(mg	1/L)	(N	TU)	(mg	1/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(hh:mm)	(m)	-	Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Cloudy	Calm	8:49	0.08	1st	Middle	21.7	21.8	7.2	7.2	0.1	0.1	80.9	80.0	7.1	7.0	5.3	5.2	2.0	2.0	Downstream	0.13
	UZa	Cloudy	Calm	8:50	0.08	2nd	Middle	21.8	21.8	7.2	7.2	0.1	0.1	79.0	80.0	6.9	7.0	5.0	5.2	2.0	2.0	Downstream	0.13
	U2b'	Cloudy	Calm	9:04	0.07	1st	Middle	22.2	22.2	7.2	7.2	0.1	0.1	33.1	33.0	2.9	2.9	5.8	5.8	3.4	3.1	Downstream	1.16
	020	Cloudy	Calm	9:05	0.07	2nd	Middle	22.2	22.2	7.2	7.2	0.1	0.1	32.8	33.0	2.9	2.9	5.8	3.0	2.8	3.1	Downstream	1.16
	G2	Cloudy	Calm	9:30	0.05	1st	Middle	22.3	22.3	7.6	7.6	0.1	0.1	80.8	81.0	7.0	7.0	6.5	6.9	9.3	9.5	Downstream	0.07
	G2	Cloudy	Calm	9:30	0.05	2nd	Middle	22.3	22.5	7.6	7.0	0.1	0.1	81.2	01.0	7.1	7.0	7.2	0.9	9.7	9.5	Downstream	0.07
	D2a	Cloudy	Calm	9:58	0.07	1st	Middle	21.0	21.0	7.1	7.1	0.1	0.1	22.7	22.3	2.0	2.0	6.8	6.8	6.4	7.3	Downstream	0.03
	DZu	Cloudy	Calm	9:58	0.07	2nd	Middle	21.0	21.0	7.1	7.1	0.1	0.1	21.9	22.5	2.0	2.0	6.8	0.0	8.1	7.5	Downstream	0.03
2025-10-23	D2b'	Cloudy	Calm	11:15	0.19	1st	Middle	21.0	21.0	7.8	7.8	1.3	1.3	72.8	73.0	6.5	6.5	16.6	16.4	6.3	6.8	Downstream	0.05
2023 10 23	020	Cloudy	Calm	11:16	0.19	2nd	Middle	21.0	21.0	7.8	7.0	1.3	1.5	73.1	75.0	6.5	0.5	16.1	10.4	7.2	0.0	Downstream	0.05
	D2c	Cloudy	Calm	11:27	0.58	1st	Middle	21.1	21.1	7.2	7.2	0.5	0.5	34.9	34.8	3.1	3.1	16.4	16.9	5.8	5.5	Downstream	0.23
	520	Cloudy	Calm	11:27	0.58	2nd	Middle	21.1	22.12	7.2	7.12	0.5	0.5	34.7	51.0	3.1	5.1	17.3	10.5	5.2	5.5	Downstream	0.23
	D2d	Cloudy	Calm	9:42	0.25	1st	Middle	21.9	21.9	7.3	7.3	0.1	0.1	88.2	88.0	7.7	7.7	13.0	13.0	8.6	8.6	Downstream	0.02
		Cloudy	Calm	9:42	0.25	2nd	Middle	21.9	22.5	7.3	7.5	0.1	0.12	87.8	00.0	7.7		12.9	15.0	8.5	0.0	Downstream	0.02
	D7	Cloudy	Calm	10:29	0.08	1st	Middle	21.4	21.4	6.9	6.8	0.1	0.1	12.5	12.2	1.1	1.1	8.0	8.4	1.0	1.0	Downstream	0.03
		Cloudy	Calm	10:29	0.08	2nd	Middle	21.4	2211	6.8	0.0	0.1	0.12	11.9	12.2	1.1		8.8	0.1	1.0	1.0	Downstream	0.03
	D8	Cloudy	Calm	10:43	0.18	1st	Middle	23.9	23.9	7.4	7.4	0.2	0.2	34.5	33.2	2.9	2.8	11.1	10.8	3.0	3.0	Downstream	0.03
		Cloudy	Calm	10:43	0.18	2nd	Middle	23.9	23.5	7.4		0.2		31.9	23.2	2.7	0	10.5	23.0	2.9	2.0	Downstream	0.03

Remark

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	inty	DO Sat	uration	D	0	Turt	idity	9	SS	Current Direction	Current Velocity
(44)	Station	Weather Condition	River Condition	(hh:mm)	()	Replicate	(Surface/Middle/	('	°C)	F	Н	(p	pt)	(0	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		condition	condition	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:32	0.08	1st	Middle	22.6	22.5	7.2	7.2	0.1	0.1	75.6	76.0	6.6	6.6	9.1	9.3	3.2	8.1	Downstream	0.16
	024	Sunny	Calm	8:32	0.08	2nd	Middle	22.5	22.3	7.2	7.2	0.1	0.1	76.4	70.0	6.6	0.0	9.5	5.5	13.0	0.1	Downstream	0.16
	U2b'	Sunny	Calm	8:49	0.07	1st	Middle	23.3	23.3	7.2	7.2	0.1	0.1	25.0	25.0	2.1	2.1	5.6	5.7	3.2	3.6	Downstream	0.57
	020	Sunny	Calm	8:50	0.07	2nd	Middle	23.3	25.5	7.2	7.2	0.1	0.1	24.9	25.0	2.1	2.1	5.9	3.7	3.9	5.0	Downstream	0.57
	G2	Sunny	Calm	9:11	0.05	1st	Middle	24.0	24.0	7.6	7.6	0.1	0.1	86.4	86.2	7.3	7.2	4.4	4.6	5.7	5.3	Downstream	0.16
	02	Sunny	Calm	9:12	0.05	2nd	Middle	24.0	24.0	7.6	7.0	0.1	0.1	85.9	00.2	7.2	7.2	4.9	4.0	4.8	3.3	Downstream	0.16
	D2a	Sunny	Calm	9:58	0.08	1st	Middle	22.6	22.6	7.1	7.1	0.1	0.1	30.0	29.9	2.6	2.6	7.2	7.5	3.8	3.6	Downstream	0.02
	DZu	Sunny	Calm	9:58	0.08	2nd	Middle	22.6	22.0	7.1	/.1	0.1	0.1	29.8	25.5	2.6	2.0	7.9	7.5	3.4	5.0	Downstream	0.02
2025-10-25	D2b'	Sunny	Calm	10:54	0.20	1st	Middle	23.4	23.4	7.8	7.8	1.5	1.5	83.2	82.7	7.0	7.0	28.1	29.0	13.0	13.5	Downstream	0.19
2025 10 25	020	Sunny	Calm	10:55	0.20	2nd	Middle	23.4	23.4	7.8	7.0	1.5	1.5	82.1	02.7	6.9	7.0	29.8	25.0	14.0	13.3	Downstream	0.19
	D2c	Sunny	Calm	11:10	0.37	1st	Middle	23.4	23.4	7.3	7.3	0.2	0.2	19.5	19.3	1.7	1.6	10.9	11.3	9.2	9.3	Downstream	0.15
	DEC	Sunny	Calm	11:10	0.37	2nd	Middle	23.4	25	7.3	713	0.2	0.2	19.1	19.5	1.6	1.0	11.6	11.5	9.3	3.5	Downstream	0.15
	D2d	Sunny	Calm	9:35	0.28	1st	Middle	23.0	23.0	7.2	7.2	0.1	0.1	105.1	104.8	9.0	9.0	18.2	17.4	4.8	5.7	Downstream	0.03
	DZu	Sunny	Calm	9:35	0.28	2nd	Middle	23.0	25.0	7.2	7.2	0.1	0.1	104.5	104.0	9.0	5.0	16.6	17.4	6.6	5.7	Downstream	0.03
	D7	Sunny	Calm	10:18	0.09	1st	Middle	22.6	22.6	7.0	6.9	0.1	0.1	15.7	15.9	1.4	1.4	2.8	2.9	3.0	2.0	Downstream	0.05
	<i>D7</i>	Sunny	Calm	10:18	0.09	2nd	Middle	22.6	22.0	6.9	0.5	0.1	0.1	16.0	15.5	1.4	1.7	3.0	2.3	1.0	2.0	Downstream	0.05
	D8	Sunny	Calm	10:35	0.08	1st	Middle	24.7	24.7	7.4	7.4	0.2	0.2	33.8	33.9	2.8	2.8	6.9	7.4	1.3	2.4	Downstream	0.02
	50	Sunny	Calm	10:35	0.08	2nd	Middle	24.7	24.7	7.4	7.4	0.2	0.2	33.9	33.3	2.8	2.0	7.8	7.4	3.5	2.7	Downstream	0.02

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sa	linty	DO Sat	turation	C	00	Turb	idity	S	S	Current Direction	Current Velocity
,	Station	Weather Condition	River Condition	<i>a.</i> .	, ,	Replicate	(Surface/Middle/	('	C)	P	Н	(r	pt)	(9	%)	(mg	g/L)	(N	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(hh:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Cloudy	Calm	8:44	0.09	1st	Middle	22.7	22.7	6.3	6.3	0.1	0.1	81.7	82.0	7.1	7.1	7.2	7.2	4.6	4.8	Downstream	0.17
	028	Cloudy	Calm	8:44	0.09	2nd	Middle	22.7	22.7	6.3	0.5	0.1	0.1	82.2	02.0	7.1	7.1	7.1	7.2	5.0	4.0	Downstream	0.17
	U2b'	Cloudy	Calm	8:59	0.06	1st	Middle	23.6	23.6	7.2	7.2	0.1	0.1	25.4	25.5	2.2	2.2	2.4	2.6	3.2	3.4	Downstream	0.95
	020	Cloudy	Calm	9:02	0.06	2nd	Middle	23.6	23.0	7.2	7.2	0.1	0.1	25.5	23.3	2.2	2.2	2.8	2.0	3.5	5.4	Downstream	0.95
	G2	Cloudy	Calm	9:24	0.05	1st	Middle	23.6	23.6	7.4	7.4	0.1	0.1	67.7	67.9	5.7	5.7	8.8	9.2	6.0	5.7	Downstream	0.09
	62	Cloudy	Calm	9:24	0.05	2nd	Middle	23.7	23.0	7.4	7.4	0.1	0.1	68.0	07.9	5.8	3.7	9.6	3.2	5.4	5.7	Downstream	0.09
	D2a	Cloudy	Calm	9:55	0.08	1st	Middle	23.1	23.1	7.0	7.0	0.1	0.1	30.6	31.0	2.6	2.7	5.6	5.7	4.5	3.9	Downstream	0.02
	DZa	Cloudy	Calm	9:55	0.08	2nd	Middle	23.1	23.1	7.0	7.0	0.1	0.1	31.4	31.0	2.7	2.7	5.9	3.7	3.3	3.9	Downstream	0.02
2025-10-27	D2b'	Cloudy	Calm	10:57	0.12	1st	Middle	23.9	23.9	7.6	7.6	2.5	2.5	57.5	58.4	4.8	4.9	11.3	11.6	9.0	8.9	Downstream	0.15
2023-10-27	D20	Cloudy	Calm	10:57	0.12	2nd	Middle	23.9	23.5	7.6	7.0	2.5	2.5	59.2	30.4	4.9	4.5	11.9	11.0	8.7	0.9	Downstream	0.15
	D2c	Cloudy	Calm	11:12	0.10	1st	Middle	23.8	23.8	7.5	7.5	0.2	0.2	17.9	19.3	1.5	1.6	26.4	26.2	5.6	4.3	Downstream	0.50
	DZC	Cloudy	Calm	11:12	0.10	2nd	Middle	23.8	25.0	7.5	7.5	0.2	0.2	20.6	15.5	1.7	1.0	26.0	20.2	3.0	7.5	Downstream	0.50
	D2d	Cloudy	Calm	9:40	0.18	1st	Middle	24.8	24.8	7.1	7.1	0.1	0.1	19.7	17.8	1.6	1.5	13.0	12.7	10.0	9.6	Downstream	0.01
	DZu	Cloudy	Calm	9:40	0.18	2nd	Middle	24.8	24.0	7.1	/.1	0.1	0.1	15.8	17.0	1.3	1.5	12.3	12.7	9.2	5.0	Downstream	0.01
	D7	Cloudy	Calm	10:21	0.10	1st	Middle	22.9	22.9	6.9	6.9	0.1	0.1	15.7	15.8	1.4	1.4	4.1	4.0	1.6	1.7	Downstream	0.04
	57	Cloudy	Calm	10:21	0.10	2nd	Middle	22.9	22.5	6.9	0.5	0.1	0.1	15.8	13.0	1.4	1.4	3.9	4.0	1.8	1.7	Downstream	0.04
	D8	Cloudy	Calm	10:34	0.18	1st	Middle	24.2	24.3	7.4	7.4	0.2	0.2	20.3	21.4	1.7	1.8	5.7	5.9	3.2	3.0	Downstream	0.01
	50	Cloudy	Calm	10:35	0.18	2nd	Middle	24.4	24.3	7.3	7.4	0.2	0.2	22.4	21.4	1.9	1.0	6.1	5.5	2.7	5.0	Downstream	0.01
Remark		Action Level E	vceedance		•																		

Limit Level Exceedance

Date				Start Time	Water Depth		Sample Water Level	Tempe	erature	_		Sali	nty	DO Sat	uration		0	Turb	idity	9	SS	Current Direction	Current Velocity
(Station	Weather Condition	River Condition	(h.h)	()	Replicate	(Surface/Middle/	(°	'C)	P	Н	(p	ot)	(%	%)	(m	g/L)	(N.	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(hh:mm)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U2a	Sunny	Calm	8:35	0.10	1st	Middle	23.4	23.4	7.0	7.0	0.1	0.1	82.3	83.4	7.0	7.1	8.3	8.5	4.0	3.9	Downstream	0.10
	020	Sunny	Calm	8:36	0.10	2nd	Middle	23.4	25.4	7.0	7.0	0.1	0.1	84.5	03.4	7.2	7.1	8.6	0.5	3.8	3.5	Downstream	0.10
	U2b'	Sunny	Calm	8:52	0.09	1st	Middle	24.3	24.3	7.1	7.1	0.1	0.1	27.7	27.8	2.3	2.2	5.6	5.4	3.5	6.8	Downstream	0.17
	020	Sunny	Calm	8:53	0.09	2nd	Middle	24.3	24.5	7.1	7.1	0.1	0.1	27.8	27.0	2.3	2.5	5.2	3.4	10.0	0.0	Downstream	0.17
	G2	Sunny	Calm	9:09	0.20	1st	Middle	24.8	24.8	7.5	7.5	0.1	0.1	72.5	73.2	6.0	6.1	7.5	7.5	6.2	4.9	Downstream	0.10
	G2	Sunny	Calm	9:10	0.20	2nd	Middle	24.8	24.0	7.5	7.5	0.1	0.1	73.9	73.2	6.1	0.1	7.5	7.5	3.6	7.5	Downstream	0.10
	D2a	Sunny	Calm	9:37	0.07	1st	Middle	24.4	24.4	7.2	7.7	0.1	0.1	28.6	28.3	2.4	2.4	5.0	5.1	4.2	3.7	Downstream	0.10
	DZa	Sunny	Calm	9:38	0.07	2nd	Middle	24.4	24.4	7.1	7.2	0.1	0.1	28.0	20.3	2.3	2.4	5.3	3.1	3.1	3.7	Downstream	0.10
2025-10-30	D2b'	Sunny	Calm	11:38	0.20	1st	Middle	25.5	25.5	7.4	7.4	5.7	5.7	47.5	47.4	3.8	3.8	8.6	8.8	9.7	9.2	Downstream	0.14
2023-10-30	020	Sunny	Calm	11:38	0.20	2nd	Middle	25.5	23.3	7.4	7.4	5.7	5.7	47.3	47.4	3.8	3.0	8.9	0.0	8.6	3.2	Downstream	0.14
	D2c	Sunny	Calm	11:48	0.15	1st	Middle	24.8	24.8	7.4	7.4	0.3	0.3	28.0	27.5	2.3	2.2	18.6	17.6	14.0	15.0	Downstream	0.15
	DZC	Sunny	Calm	11:48	0.15	2nd	Middle	24.8	24.0	7.4	7.4	0.3	0.5	27.0	27.3	2.2	2.5	16.5	17.0	16.0	13.0	Downstream	0.15
	D2d	Sunny	Calm	9:21	0.40	1st	Middle	24.7	24.7	7.1	7.7	0.8	0.6	18.4	17.1	1.5	1.4	9.7	10.6	6.8	6.5	Downstream	0.11
	DZu	Sunny	Calm	9:23	0.40	2nd	Middle	24.8	24.7	7.2	7.2	0.5	0.0	15.8	17.1	1.3	1.4	11.4	10.0	6.2	0.5	Downstream	0.11
	D7	Sunny	Calm	9:57	0.08	1st	Middle	24.2	24.2	6.9	6.9	0.1	0.1	17.6	17.6	1.5	1.5	4.4	4.6	1.3	1.4	Downstream	0.10
	07	Sunny	Calm	9:58	0.08	2nd	Middle	24.2	24.2	6.9	0.5	0.1	0.1	17.6	17.0	1.5	1.5	4.8	4.0	1.4	1.4	Downstream	0.10
	D8	Sunny	Calm	10:07	0.10	1st	Middle	25.0	25.0	7.5	7.5	0.2	0.2	25.7	24.7	2.1	2.0	7.8	7.7	3.3	2,2	Downstream	0.10
	50	Sunny	Calm	10:07	0.10	2nd	Middle	25.0	23.0	7.5	7.5	0.2	0.2	23.6	24./	2.0	2.0	7.6	/./	1.0	2.2	Downstream	0.10

Water Quality Monitoring Data (for Works Contract No. ND/2024/10)

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_		Sa	linty	DO Sat	turation		00	Turl	oidity	9	SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)	р	П	(p	pt)	(9	%)	(m	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Condition	Condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	11:50	0.10	1st	Middle	26.6	26.6	7.3	7.2	0.0	0.0	98.8	98.8	7.9	7.0	4.0	3.9	3.8	4.0	Downstream	0.30
	Ola	Sunny	Calm	11:50	0.10	2nd	Middle	26.6	20.0	7.2	7.5	0.0	0.0	98.7	30.0	7.9	7.5	3.9	3.9	4.2	4.0	Downstream	0.30
	U1b'	Sunny	Calm	12:14	0.18	1st	Middle	28.0	28.0	7.7	7.7	0.1	0.1	129.1	122.7	10.1	0.6	27.9	28.2	14.3	13.4	Downstream	0.26
	010	Sunny	Calm	12:14	0.18	2nd	Middle	28.0	20.0	7.7	7.7	0.1	0.1	116.3	122.7	9.1	5.0	28.4	20.2	12.5	13.4	Downstream	0.26
	G1a	Sunny	Calm	11:26	0.11	1st	Middle	27.5	27.5	7.6	7.5	0.1	0.1	103.3	103.0	8.2	8.1	4.9	5.0	3.0	2.7	Downstream	0.39
	Gia	Sunny	Calm	11:27	0.11	2nd	Middle	27.5	27.3	7.5	7.5	0.1	0.1	102.6	105.0	8.1	0.1	5.1	5.0	2.4	2.7	Downstream	0.90
2025-10-02	G1b	Sunny	Calm	11:14	0.40	1st	Middle	28.8	28.8	7.6	7.6	0.1	0.1	108.2	108.3	8.3	8.3	8.1	8.5	13.8	13.0	Downstream	0.22
2025-10-02	GID	Sunny	Calm	11:14	0.40	2nd	Middle	28.8	20.0	7.6	7.0	0.1	0.1	108.3	100.5	8.4	0.5	8.9	0.5	12.2	13.0	Downstream	0.22
	G1c	Sunny	Calm	12:45	0.10	1st	Middle	30.1	30.1	7.7	77	0.1	0.1	88.5	88.4	6.7	6.7	6.5	6.6	7.5	6.2	Downstream	0.55
	GIC	Sunny	Calm	12:45	0.10	2nd	Middle	30.1	30.1	7.7	7.7	0.1	0.1	88.2	00.4	6.7	0.7	6.7	0.0	4.9	0.2	Downstream	0.55
	G1d	Sunny	Calm	12:32	0.15	1st	Middle	30.5	30.5	7.9	7.0	0.1	0.1	77.6	78.8	5.8	5.9	12.3	11.7	10.3	5.7	Downstream	0.06
	Jiu	Sunny	Calm	12:32	0.15	2nd	Middle	30.5	50.5	7.9	7.5	0.1	0.1	79.9	,3.0	6.0	3.9	11.0	11.7	1.0	5.7	Downstream	0.06
	D1'	Sunny	Calm	12:57	0.30	1st	Middle	33.5	33.6	7.5	7.5	0.4	0.4	65.2	65.2	4.6	1.6	22.0	22.7	16.8	19.7	Downstream	0.11
	<i>D</i> 1	Sunny	Calm	12:57	0.30	2nd	Middle	33.6	55.0	7.5	7.5	0.4	5.4	65.2	03.2	4.6	7.0	23.4	22.7	22.6	13.7	Downstream	0.11

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_		Sal	inty	DO Sat	turation	D	0	Turt	idity	9	S	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	°C)	P	Н	(p	pt)	(0	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-iiiii-uu)		condition	condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	11:14	0.10	1st	Middle	26.3	26.3	7.3	7.3	0.0	0.0	100.4	100.4	8.1	0 1	5.7	5.9	4.5	3.8	Downstream	0.46
	010	Sunny	Calm	11:14	0.10	2nd	Middle	26.3	20.3	7.3	7.5	0.0	0.0	100.3	100.4	8.1	8.1	6.1	3.5	3.2	3.0	Downstream	0.46
	U1b'	Sunny	Calm	11:35	0.12	1st	Middle	27.7	27.7	7.6	7.6	0.1	0.1	110.0	110.0	8.7	9.6	21.0	22.2	14.8	14.6	Downstream	0.20
	OID	Sunny	Calm	11:35	0.12	2nd	Middle	27.7	27.7	7.6	7.0	0.1	0.1	109.9	110.0	8.6	0.0	23.3	22.2	14.3	14.0	Downstream	0.20
	G1a	Sunny	Calm	10;53	0.10	1st	Middle	26.6	26.6	7.5	7.5	0.0	0.0	98.8	98.1	7.9	7.9	3.9	4.0	2.4	3.9	Downstream	0.23
	010	Sunny	Calm	10:53	0.10	2nd	Middle	26.6	20.0	7.5	7.5	0.0	0.0	97.3	50.1	7.8	7.5	4.2	4.0	5.4	5.5	Downstream	0.23
2025-10-04	G1b	Sunny	Calm	10:39	0.40	1st	Middle	27.8	27.8	7.5	7.5	0.1	0.1	110.5	110.2	8.7	8.7	8.0	8.3	13.0	13.1	Downstream	0.22
2023 10 04	GID	Sunny	Calm	10:40	0.40	2nd	Middle	27.8	27.0	7.5	7.5	0.1	0.1	109.9	110.2	8.6	0.7	8.7	0.5	13.3	15.1	Downstream	0.22
	G1c	Sunny	Calm	12:06	0.10	1st	Middle	29.5	29.5	7.7	77	0.1	0.1	91.3	91.0	7.0	6.9	5.1	5.0	5.8	6.2	Downstream	0.57
	GIC	Sunny	Calm	12:08	0.10	2nd	Middle	29.5	29.3	7.7	7.7	0.1	0.1	90.7	91.0	6.9	0.5	5.0	5.0	6.6	0.2	Downstream	0.57
	G1d	Sunny	Calm	11:54	0.12	1st	Middle	29.8	29.8	7.9	7.9	0.1	0.1	87.6	88.1	6.7	6.7	8.4	8.5	7.8	8.4	Downstream	0.19
	310	Sunny	Calm	11:54	0.12	2nd	Middle	29.8	23.0	7.9	7.9	0.1	5.1	88.5	55.1	6.7	0.7	8.6	0.5	9.1	0.4	Downstream	0.19
	D1'	Sunny	Calm	12:18	0.30	1st	Middle	31.5	31.5	7.6	7.6	0.4	0.4	65.2	64.5	4.8	4.7	19.0	18.4	27.8	29.5	Downstream	0.18
	51	Sunny	Calm	12:19	0.30	2nd	Middle	31.5	51.5	7.6	7.0	0.4	5	63.7	04.5	4.7	7.7	17.7	10.4	31.3	23.3	Downstream	0.18

Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sal	inty	DO Sat	turation	D	00	Turt	idity	9	SS	Current Direction	Current Velocity
(annu mm dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	(°C)	p	п	(p	pt)	('	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		condition	condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	11:39	0.10	1st	Middle	26.0	26.0	7.3	7.3	0.0	0.0	98.2	98.1	8.0	8.0	6.2	6.4	4.1	4.2	Downstream	0.46
	Old	Sunny	Calm	11:39	0.10	2nd	Middle	26.0	20.0	7.3	7.5	0.0	0.0	98.0	50.1	8.0	0.0	6.5	0.4	4.2	7.2	Downstream	0.46
	U1b'	Sunny	Calm	12:04	0.12	1st	Middle	27.7	27.7	8.9	8.9	0.1	0.1	109.2	109.3	8.6	8.6	62.0	60.6	22.0	24.7	Downstream	0.20
	010	Sunny	Calm	12:05	0.12	2nd	Middle	27.7	27.7	8.9	0.9	0.1	0.1	109.4	105.5	8.6	0.0	59.2	00.0	27.5	24.7	Downstream	0.20
	G1a	Sunny	Calm	11:14	0.10	1st	Middle	26.8	26.8	7.6	7.6	0.1	0.1	94.3	93.8	7.5	7.5	11.1	11.5	7.1	7.5	Downstream	0.23
	Old	Sunny	Calm	11:15	0.10	2nd	Middle	26.8	20.0	7.6	7.0	0.1	0.1	93.3	33.0	7.5	7.5	11.9	11.5	7.9	7.5	Downstream	0.23
2025-10-06	G1b	Sunny	Calm	11:01	0.40	1st	Middle	27.9	27.9	7.6	7.6	0.1	0.1	66.0	66.3	5.2	5.2	12.3	12.2	11.5	12.1	Downstream	0.22
2023 10 00	GID	Sunny	Calm	11:01	0.40	2nd	Middle	27.9	27.5	7.6	7.0	0.1	0.1	66.5	00.5	5.2	3.2	12.1	12.2	12.8	12.1	Downstream	0.22
	G1c	Sunny	Calm	12:56	0.10	1st	Middle	29.4	29.4	7.8	7.8	0.1	0.1	85.9	85.9	6.6	6.5	7.4	7.7	8.3	8.0	Downstream	0.57
	GIC	Sunny	Calm	12:56	0.10	2nd	Middle	29.4	23.4	7.8	7.0	0.1	0.1	85.8	65.9	6.5	0.5	8.0	7.7	7.7	0.0	Downstream	0.57
	G1d	Sunny	Calm	12:37	0.12	1st	Middle	29.4	29.4	8.1	8.1	0.1	0.1	83.8	83.6	6.4	6.4	14.5	14.0	11.3	11.0	Downstream	0.19
	Old	Sunny	Calm	12:37	0.12	2nd	Middle	29.4	23.4	8.1	0.1	0.1	5.1	83.3	55.0	6.4	0.4	13.5	14.0	10.8	11.0	Downstream	0.19
	D1'	Sunny	Calm	13:09	0.30	1st	Middle	30.6	30.6	7.5	7.5	0.3	0.3	48.2	47.6	3.6	3.6	28.3	27.5	31.2	26.5	Downstream	0.18
	51	Sunny	Calm	13:09	0.30	2nd	Middle	30.6	30.0	7.5	7.5	0.3	0.5	47.0	47.0	3.5	5.0	26.6	27.3	21.7	20.5	Downstream	0.18

Remar

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	u	Sa	inty	DO Sat	uration	D	0	Turl	oidity	9	SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)	,	Н	(p	pt)	(%	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Contaction	condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	13:24	0.08	1st	Middle	26.7	26.7	7.3	7.3	0.0	0.0	100.0	99.8	8.0	8.0	4.9	4.8	19.1	11.1	Downstream	0.30
	Old	Sunny	Calm	13:25	0.08	2nd	Middle	26.7	20.7	7.3	7.5	0.0	0.0	99.6	33.0	8.0	0.0	4.7	4.0	3.0	11.1	Downstream	0.30
	U1b'	Sunny	Calm	13:52	0.12	1st	Middle	28.3	28.3	7.8	7.8	0.1	0.1	109.3	109.4	8.5	8.5	68.2	69.1	31.4	32,4	Downstream	0.08
	010	Sunny	Calm	13:52	0.12	2nd	Middle	28.3	20.3	7.8	7.0	0.1	0.1	109.4	105.4	8.5	0.5	69.9	05.1	33.5	32.4	Downstream	0.08
	G1a	Sunny	Calm	12:57	0.10	1st	Middle	28.4	28,4	7.6	7.6	0.0	0.0	103.8	103.0	8.1	8.0	5.1	5.1	2.7	4.5	Downstream	0.27
	Olu	Sunny	Calm	12:59	0.10	2nd	Middle	28.4	20.4	7.5	7.0	0.0	0.0	102.2	103.0	7.9	0.0	5.0	3.1	6.3	7.5	Downstream	0.27
2025-10-08	G1b	Sunny	Calm	12:46	0.38	1st	Middle	29.8	29.8	7.6	7.6	0.1	0.1	111.1	110.5	8.4	8.4	8.3	8.4	3.8	4.5	Downstream	0.10
2023-10-08	GID	Sunny	Calm	12:47	0.38	2nd	Middle	29.8	25.0	7.6	7.0	0.1	0.1	109.8	110.5	8.3	0.4	8.4	0.4	5.3	4.5	Downstream	0.10
	G1c	Sunny	Calm	14:19	0.10	1st	Middle	29.6	29.6	7.8	7.7	0.1	0.1	80.4	80.5	6.1	6.1	4.3	4.2	17.3	14.5	Downstream	0.58
	GIC	Sunny	Calm	14;21	0.10	2nd	Middle	29.6	25.0	7.7	7.7	0.1	0.1	80.5	00.5	6.1	0.1	4.2	4.2	11.8	14.3	Downstream	0.58
	G1d	Sunny	Calm	14:06	0.15	1st	Middle	30.3	30.3	7.9	7.0	0.1	0.1	76.2	76.7	5.7	5.8	16.7	16.0	15.6	12.2	Downstream	0.08
	Olu	Sunny	Calm	14:06	0.15	2nd	Middle	30.3	50.5	7.9	7.9	0.1	0.1	77.1	75.7	5.8	5.0	15.3	10.0	8.7	12.2	Downstream	0.08
	D1'	Sunny	Calm	14;34	0.32	1st	Middle	31.2	31.2	7.5	7.5	0.3	0.3	57.8	57.5	4.3	4.2	24.9	25.8	23.9	23.9	Downstream	0.14
	51	Sunny	Calm	14:34	0.32	2nd	Middle	31.3	51.2	7.5	7.5	0.3	0.5	57.1	57.5	4.2	7.2	26.6	23.0	23.9	23.3	Downstream	0.14

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	Н	Sa	linty	DO Sat	uration	D	0	Turb	idity	S	SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)	,	л	(p	pt)	(0	%)	(mg	g/L)	(N	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-iiiii-dd)		Contaction	Contaction	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	12:40	0.07	1st	Middle	26.3	26.3	7.3	73	0.0	0.0	96.6	96.6	7.8	7.8	5.5	5.6	7.5	5.5	Downstream	0.36
	Old	Sunny	Calm	12:40	0.07	2nd	Middle	26.3	20.5	7.3	7.3	0.0	0.0	96.6	30.0	7.8	7.0	5.7	5.0	3.6	3.5	Downstream	0.36
	U1b'	Sunny	Calm	13:08	0.12	1st	Middle	28.6	28.6	7.7	7.7	0.1	0.1	108.5	109.0	8.4	8.4	7.4	7.2	3.7	2.2	Downstream	0.08
	010	Sunny	Calm	13:08	0.12	2nd	Middle	28.6	20.0	7.7	7.7	0.1	0.1	109.4	105.0	8.5	0.4	7.2	7.3	3.0	3.3	Downstream	0.08
	G1a	Sunny	Calm	12:10	0.10	1st	Middle	27.7	27.7	7.7	7.7	0.0	0.0	99.0	99.6	7.8	7.0	3.1	2.4	2.3	7.2	Downstream	0.22
	Gia	Sunny	Calm	12:10	0.10	2nd	Middle	27.7	27.7	7.6	7.7	0.0	0.0	100.2	33.0	7.9	7.0	3.8	3.4	12.1	7.2	Downstream	0.22
2025-10-10	G1b	Sunny	Calm	11:56	0.40	1st	Middle	29.1	29.1	7.7	7.7	0.1	0.1	70.7	69.8	5.4	5.4	10.4	0.0	2.8	2.7	Downstream	0.14
2023-10-10	GID	Sunny	Calm	11:57	0.40	2nd	Middle	29.1	29.1	7.7	7.7	0.1	0.1	68.9	09.0	5.3	5	9.4	9.9	4.7	3.7	Downstream	0.14
	G1c	Sunny	Calm	13:36	0.08	1st	Middle	30.7	30.7	7.8	7.8	0.1	0.1	94.7	94.5	7.1	7.1	5.8	5.0	9.4	10.5	Downstream	0.20
	OIC	Sunny	Calm	13:36	0.08	2nd	Middle	30.7	30.7	7.8	7.0	0.1	0.1	94.3	54.5	7.0	7.1	6.0	3.5	11.6	10.5	Downstream	0.20
	G1d	Sunny	Calm	13:23	0.15	1st	Middle	31.2	31.2	7.8	7.0	0.1	0.1	67.8	67.8	5.0	5.0	7.0	7.0	9.8	9.0	Downstream	0.04
	Giu	Sunny	Calm	13:24	0.15	2nd	Middle	31.3	31.2	7.8	7.0	0.1	0.1	67.8	07.0	5.0	5.0	7.1	7.0	8.2	5.0	Downstream	0.04
	D1'	Sunny	Calm	13:47	0.25	1st	Middle	34.6	34.6	7.7	7.7	0.5	0.5	75.8	75.2	5.3	5.2	32.7	30.8	20.5	21.0	Downstream	0.07
	DI	Sunny	Calm	13:47	0.25	2nd	Middle	34.6	34.0	7.7	7.7	0.5	0.5	74.6	75.2	5.2	3.2	28.9	30.0	21.6	21.0	Downstream	0.07

Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	ш	Sal	inty	DO Sat	turation		00	Turl	oidity		SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	°C)	р	п	(p	pt)	('	%)	(m	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-iiiii-da)		Condition	Condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Cloudy	Calm	9:01	0.08	1st	Middle	24.8	24.8	6.2	6.2	0.0	0.0	96.7	96.8	8.0	9.0	6.8	7.0	101.4	52.4	Downstream	0.28
	Ola	Cloudy	Calm	9:02	0.08	2nd	Middle	24.8	24.0	6.2	0.2	0.0	0.0	96.9	90.0	8.0	0.0	7.3	7.0	3.4	32.4	Downstream	0.28
	U1b'	Cloudy	Calm	9:25	0.20	1st	Middle	27.1	27.1	7.9	7.0	0.1	0.1	107.9	108.0	8.6	8.6	282.0	285.5	39.2	69.1	Downstream	0.28
	010	Cloudy	Calm	9:26	0.20	2nd	Middle	27.1	27.1	7.9	7.5	0.1	0.1	108.1	100.0	8.6	0.0	289.0	203.3	99.0	05.1	Downstream	0.28
	G1a	Cloudy	Calm	8:39	0.12	1st	Middle	25.5	25.5	6.3	6.3	0.0	0.0	97.6	97.6	8.0	8.0	3.1	2.9	3.6	3.8	Downstream	0.21
	Giu	Cloudy	Calm	8:40	0.12	2nd	Middle	25.5	25.5	6.3	0.5	0.0	0.0	97.6	37.0	8.0	0.0	2.6	2.5	4.0	3.0	Downstream	0.21
2025-10-13	G1b	Cloudy	Calm	8:26	0.36	1st	Middle	26.2	26.2	7.1	7.0	0.1	0.1	117.6	117.3	9.5	9.5	7.2	7.4	12.2	10.6	Downstream	0.15
2023-10-13	GID	Cloudy	Calm	8:26	0.36	2nd	Middle	26.2	20.2	7.0	7.0	0.1	0.1	117.0	117.5	9.5	3.3	7.6	7.4	9.1	10.0	Downstream	0.15
	G1c	Cloudy	Calm	9:56	0.21	1st	Middle	27.1	27.1	7.5	7.5	0.1	0.1	74.5	74.6	5.9	5.9	34.4	34.2	30.4	16.7	Downstream	0.49
	GIC	Cloudy	Calm	9:56	0.21	2nd	Middle	27.1	27.1	7.5	7.5	0.1	0.1	74.6	74.0	5.9	3.5	33.9	54.2	3.0	10.7	Downstream	0.49
	G1d	Cloudy	Calm	9:43	0.20	1st	Middle	27.1	27.1	7.3	7.2	0.1	0.1	67.1	67.4	5.3	5.4	52.0	55.0	108.8	55.6	Downstream	0.09
	Giu	Cloudy	Calm	9:44	0.20	2nd	Middle	27.2	27.1	7.3	7.5	0.1	0.1	67.6	07.4	5.4	3.4	57.9	33.0	2.4	33.0	Downstream	0.09
	D1'	Cloudy	Calm	10:10	0.36	1st	Middle	27.2	27.2	7.4	7.4	0.3	0.3	35.4	36.0	2.8	2.0	27.7	26.4	22.3	21.1	Downstream	0.12
	DI	Cloudy	Calm	10:11	0.36	2nd	Middle	27.2	2/.2	7.4	7.4	0.3	0.3	36.5	30.0	2.9	2.9	25.1	20.4	19.9	21.1	Downstream	0.12

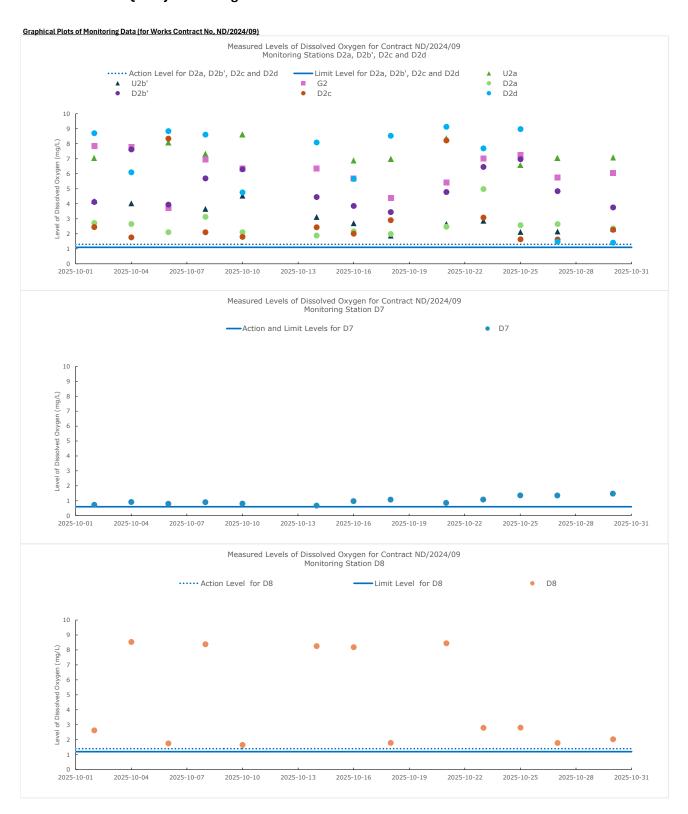
Remark

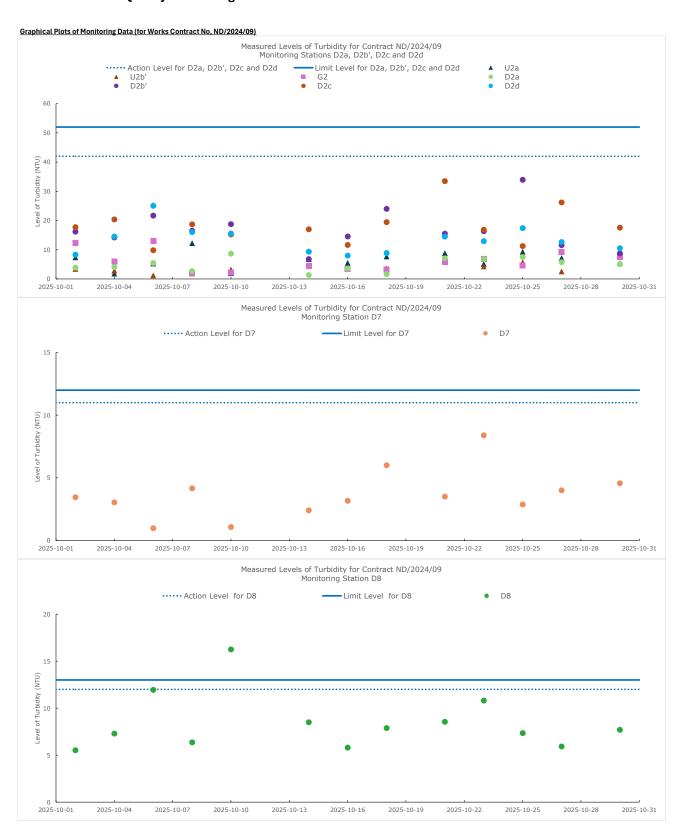
Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	u	Sa	inty	DO Sat	uration	D	0	Turt	idity	S	s	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)	,	Н	(p	pt)	(0	%)	(mg	g/L)	(N	TU)	(mg	J/L)	(No current /	(No current /
(yyyy-iiiii-dd)		condition	condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	9:11	0.08	1st	Middle	25.0	25.5	7.3	73	0.0	0.0	111.0	111.1	9.2	9.2	8.0	7.9	2.7	2.8	Downstream	0.28
	Old	Sunny	Calm	9:12	0.08	2nd	Middle	26.0	25.5	7.3	7.5	0.0	0.0	111.2	111.1	9.2	5.2	7.9	7.5	2.8	2.0	Downstream	0.28
	U1b'	Sunny	Calm	9:40	0.12	1st	Middle	27.4	27.4	7.8	7.8	0.1	0.1	109.4	109.4	8.7	8.7	33.0	33.2	14.2	13.7	Downstream	0.13
	010	Sunny	Calm	9:40	0.12	2nd	Middle	27.4	27.4	7.8	7.0	0.1	0.1	109.3	105.4	8.7	0.7	33.4	33.2	13.3	13.7	Downstream	0.13
	G1a	Sunny	Calm	8:47	0.12	1st	Middle	25.2	25.2	7.5	7.5	0.0	0.0	90.7	89.7	7.5	7.4	5.1	5.1	1.9	4.3	Downstream	0.26
	Gia	Sunny	Calm	8:48	0.12	2nd	Middle	25.2	23.2	7.5	7.5	0.0	0.0	88.7	05.7	7.3	7.4	5.2	5.1	6.7	4.5	Downstream	0.26
2025-10-15	G1b	Sunny	Calm	8:33	0.36	1st	Middle	25.8	25.8	7.3	7.3	0.1	0.1	52.8	52.1	4.3	4.2	13.7	14.8	14.6	12.3	Downstream	0.15
2025-10-15	GID	Sunny	Calm	8:34	0.36	2nd	Middle	25.9	23.0	7.3	7.5	0.1	0.1	51.3	32.1	4.2	4.2	15.9	14.0	10.0	12.3	Downstream	0.15
	G1c	Sunny	Calm	10;09	0.11	1st	Middle	27.6	27.6	7.6	7.6	0.1	0.1	66.3	66.4	5.2	- 2	9.9	9.6	6.2	4 5	Downstream	0.42
	GIC	Sunny	Calm	10:09	0.11	2nd	Middle	27.6	27.0	7.6	7.0	0.1	0.1	66.4	00.4	5.2	5.2	9.3	9.0	2.7	4.5	Downstream	0.42
	G1d	Sunny	Calm	9:55	0.11	1st	Middle	28.4	28.4	7.7	7.7	0.1	0.1	72.5	72.7	5.6	5.7	7.8	7.8	4.6	29.0	Downstream	0.08
	Giu	Sunny	Calm	9:56	0.11	2nd	Middle	28.4	20.4	7.7	7.7	0.1	0.1	72.8	/2./	5.7	3.7	7.8	7.0	53.4	25.0	Downstream	0.08
	D1'	Sunny	Calm	10:37	0.39	1st	Middle	28.8	28.8	7.5	7.5	0.4	0.4	35.2	34.6	2.7	2.7	21.6	21.4	23.1	22.7	Downstream	0.09
	DI	Sunny	Calm	10:37	0.39	2nd	Middle	28.8	20.0	7.5	7.5	0.4	0.4	34.0	J4.0	2.6	2.7	21.2	21.4	22.3	22.7	Downstream	0.09

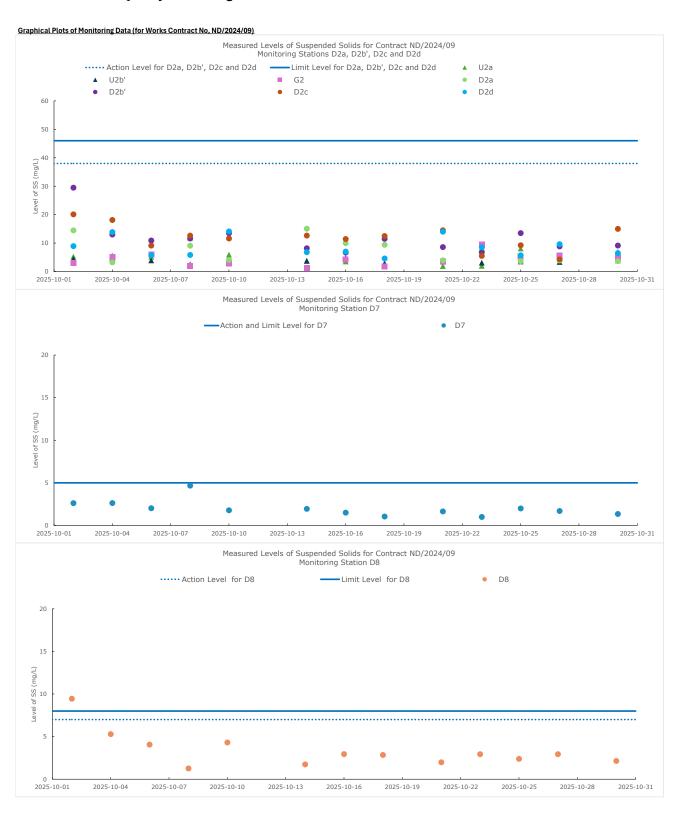
Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	Н	Sa	linty	DO Sat	uration	D	0	Turk	oidity	S	S	Current Direction	Current Velocity
(soosy mm dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)		л	(r	pt)	(0	%)	(m	g/L)	(N	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Contaction	Contaction	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	9:29	0.08	1st	Middle	24.9	25.0	7.2	7.2	0.0	0.0	98.8	98.0	8.2	R 1	5.8	5.8	2.4	2.5	Downstream	0.16
	Ola	Sunny	Calm	9:30	0.08	2nd	Middle	25.0	23.0	7.2	7.2	0.0	0.0	97.1	90.0	8.0	8.1	5.8	3.0	2.6	2.5	Downstream	0.16
	U1b'	Sunny	Calm	9:54	0.12	1st	Middle	27.5	27.6	8.8	8.8	0.1	0.1	107.7	107.5	8.5	8.5	24.2	23.6	19.0	19.0	Downstream	0.03
	010	Sunny	Calm	9:54	0.12	2nd	Middle	27.6	27.0	8.8	0.0	0.1	0.1	107.2	107.5	8.5	0.5	22.9	23.0	19.0	15.0	Downstream	0.03
	G1a	Sunny	Calm	9:02	0.12	1st	Middle	25.3	25.3	7.1	7.0	0.0	0.0	107.1	107.8	8.9	8.9	5.5	5.1	2.2	2.2	Downstream	0.32
	Gia	Sunny	Calm	9:03	0.12	2nd	Middle	25.3	23.3	7.0	7.0	0.0	0.0	108.5	107.0	8.9	0.5	4.8	5.1	2.1	2.2	Downstream	0.32
2025-10-17	G1b	Sunny	Calm	8:48	0.30	1st	Middle	26.0	26.0	6.6	6.6	0.1	0.1	39.8	40.1	3.2	3.3	12.7	12.0	11.0	9.6	Downstream	0.08
2023-10-17	GID	Sunny	Calm	8:49	0.30	2nd	Middle	26.0	20.0	6.7	0.0	0.1	0.1	40.3	40.1	3.3	3.3	11.2	12.0	8.1	5.0	Downstream	0.08
	G1c	Sunny	Calm	10:46	0.08	1st	Middle	28.0	28.0	7.8	7.0	0.1	0.1	71.3	71.8	5.6	5.6	6.0	6.1	6.6	6.5	Downstream	0.55
	GIC	Sunny	Calm	10:46	0.08	2nd	Middle	28.0	20.0	7.8	7.0	0.1	0.1	72.3	71.0	5.7	3.0	6.2	0.1	6.4	0.5	Downstream	0.55
	G1d	Sunny	Calm	10:30	0.15	1st	Middle	29.2	29.2	8.2	8.2	0.1	0.1	100.2	100.2	7.7	7.7	84.5	84.4	58.0	60.0	Downstream	0.08
	GIU	Sunny	Calm	10:30	0.15	2nd	Middle	29.2	29.2	8.2	0.2	0.1	0.1	100.1	100.2	7.7	7.7	84.2	04.4	62.0	60.0	Downstream	0.08
	D1'	Sunny	Calm	11:00	0.30	1st	Middle	28.8	28.8	7.4	7.4	0.3	0.3	26.6	25.9	2.1	2.0	34.8	35.7	21.0	19.0	Downstream	0.10
	DI	Sunny	Calm	11:00	0.30	2nd	Middle	28.8	20.0	7.4	7.4	0.3	0.5	25.1	23.9	1.9	2.0	36.6	33.7	17.0	19.0	Downstream	0.10

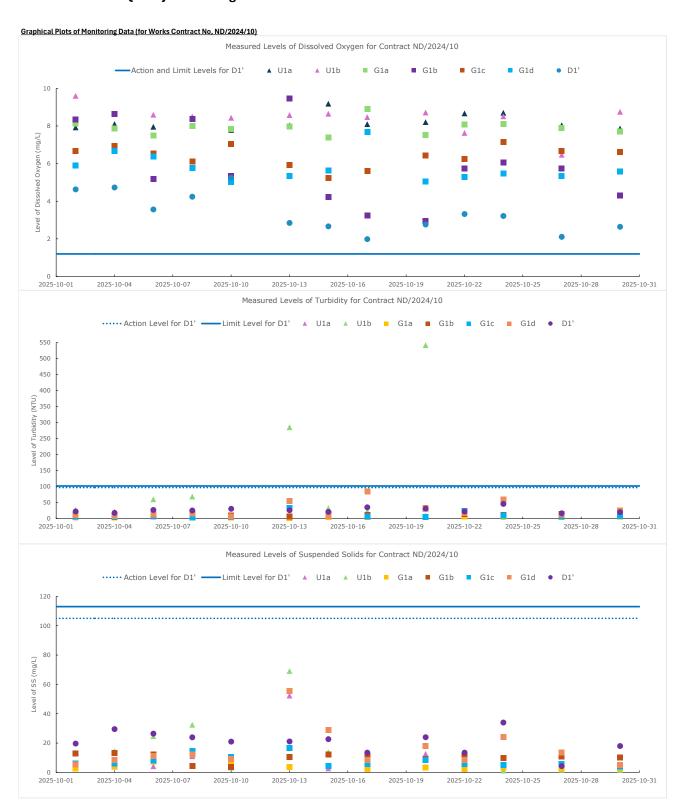
Date				Start Time	Water Depth		Sample Water Level	Temp	erature			Sal	inty	DO Sat	turation	D	0	Turb	idity	5	SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)	р	н	(р	pt)	('	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-iiiii-uu)		condition	Contaction	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	9:19	0.08	1st	Middle	23.7	23.7	7.1	7.1	0.0	0.0	97.1	97.1	8.2	0.7	8.2	8.6	23.0	12.8	Downstream	0.31
	Ola	Sunny	Calm	9:19	0.08	2nd	Middle	23.7	25.7	7.1	7.1	0.0	0.0	97.0	37.1	8.2	0.2	9.0	0.0	2.5	12.0	Downstream	0.31
	U1b'	Sunny	Calm	9:43	0.12	1st	Middle	26.1	26.1	7.3	7.3	0.1	0.1	107.5	107.7	8.7	0.7	541.0	542.0	360.0	405.0	Downstream	0.26
	010	Sunny	Calm	9:43	0.12	2nd	Middle	26.1	20.1	7.4	7.5	0.1	0.1	107.9	107.7	8.7	0.7	543.0	342.0	450.0	403.0	Downstream	0.26
	G1a	Sunny	Calm	8:58	0.11	1st	Middle	24.4	24.4	7.1	7.1	0.0	0.0	89.6	90.1	7.5	7.5	4.8	5.0	3.9	3.6	Downstream	0.31
	Gia	Sunny	Calm	8:58	0.11	2nd	Middle	24.4	24.4	7.1	7.1	0.0	0.0	90.6	90.1	7.6	7.5	5.1	5.0	3.2	3.0	Downstream	0.31
2025-10-20	G1b	Sunny	Calm	8:39	0.30	1st	Middle	25.2	25.2	6.7	6.7	0.2	0.2	36.4	35.9	3.0	3.0	32.2	32.2	11.0	9.0	Downstream	0.13
2023-10-20	GID	Sunny	Calm	8:40	0.30	2nd	Middle	25.2	25.2	6.7	0.7	0.2	0.2	35.4	33.9	2.9	3.0	32.1	32.2	7.0	5.0	Downstream	0.13
	G1c	Sunny	Calm	10:39	0.07	1st	Middle	26.5	26.5	7.8	7.7	0.1	0.1	80.0	80.0	6.4	6.4	6.1	5.8	11.0	8.4	Downstream	0.20
	GIC	Sunny	Calm	10:39	0.07	2nd	Middle	26.5	20.5	7.7	7.7	0.1	0.1	80.0	00.0	6.4	0.4	5.5	5.0	5.8	0.4	Downstream	0.20
	G1d	Sunny	Calm	10:15	0.12	1st	Middle	26.0	26.1	8.2	8.2	0.1	0.1	62.3	62.3	5.1	5.1	32.4	33.1	34.0	18.1	Downstream	0.08
	GIU	Sunny	Calm	10:15	0.12	2nd	Middle	26.1	20.1	8.2	0.2	0.1	0.1	62.3	02.3	5.1	J.1	33.8	JJ.1	2.1	10.1	Downstream	0.08
	D1'	Sunny	Calm	10:52	0.38	1st	Middle	26.2	26.2	7.4	7.4	0.3	0.3	33.6	34.3	2.7	2.0	32.9	31.6	24.0	24.0	Downstream	0.11
	DI	Sunny	Calm	10:53	0.38	2nd	Middle	26.2	20.2	7.4	7.4	0.3	0.3	35.0	34.3	2.8	2.0	30.3	31.0	24.0	24.0	Downstream	0.11

Remark


Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	ш	Sa	inty	DO Sat	uration	D	0	Turt	oidity	9	SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)	,	Н	(p	pt)	(%	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-iiiii-uu)		comunicion	contaction	(1111.11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Rainy	Calm	9:13	0.08	1st	Middle	20.7	20.7	7.4	7.4	0.0	0.0	96.5	96.8	8.7	8.7	11.0	11.2	4.3	4.2	Downstream	0.29
	010	Rainy	Calm	9:13	0.08	2nd	Middle	20.7	20.7	7.4	7.4	0.0	0.0	97.0	50.0	8.7	0.7	11.4	11.2	4.1	7.2	Downstream	0.29
	U1b'	Rainy	Calm	9:40	0.12	1st	Middle	23.3	23,4	7.3	7.2	0.1	0.1	88.9	89.6	7.6	7.6	11.8	12.0	4.4	4.3	Downstream	0.03
	010	Rainy	Calm	9:41	0.12	2nd	Middle	23.4	23.4	7.3	7.5	0.1	0.1	90.3	09.0	7.7	7.0	12.1	12.0	4.2	4.5	Downstream	0.03
	G1a	Rainy	Calm	8:47	0.12	1st	Middle	20.7	20.7	7.6	7.6	0.0	0.0	90.2	90.0	8.1	8.1	7.6	7.5	1.8	2.2	Downstream	0.20
	Gia	Rainy	Calm	8:48	0.12	2nd	Middle	20.7	20.7	7.6	7.0	0.0	0.0	89.8	30.0	8.1	0.1	7.5	7.5	2.6	2.2	Downstream	0.20
2025-10-22	G1b	Rainy	Calm	8:33	0.30	1st	Middle	21.4	21.4	7.3	7.2	0.1	0.1	65.9	65.1	5.8	5.7	13.0	14.1	9.7	11.4	Downstream	0.03
2023-10-22	GID	Rainy	Calm	8:34	0.30	2nd	Middle	21.4	21.4	7.3	7.3	0.1	0.1	64.2	05.1	5.7	3.7	15.2	14.1	13.0	11.4	Downstream	0.03
	G1c	Rainy	Calm	11;12	0.08	1st	Middle	22.4	22.4	7.6	7.6	0.1	0.1	72.5	72.0	6.3	6.2	23.4	23.6	2.2	5.7	Downstream	0.18
	GIC	Rainy	Calm	11:12	0.08	2nd	Middle	22.4	22.4	7.6	7.0	0.1	0.1	71.5	72.0	6.2	0.2	23.8	23.0	9.2	3.7	Downstream	0.18
	G1d	Rainy	Calm	9:57	0.12	1st	Middle	21.4	21.4	7.9	7.9	0.1	0.1	60.7	59.9	5.4	5.2	18.4	18.4	8.5	8.5	Downstream	0.06
	Giu	Rainy	Calm	9:58	0.12	2nd	Middle	21.4	21.4	7.9	7.5	0.1	0.1	59.1	39.9	5.2	3.3	18.3	10.4	8.4	0.5	Downstream	0.06
	D1'	Rainy	Calm	11:25	0.38	1st	Middle	20.6	20.6	7.4	7.4	0.3	0.3	37.3	37.0	3.4	3.3	21.9	22.5	14.0	13.5	Downstream	0.02
	DI	Rainy	Calm	11:25	0.38	2nd	Middle	20.6	20.0	7.4	7.4	0.3	0.3	36.7	37.0	3.3	5.5	23.0	22.3	13.0	13.5	Downstream	0.02


Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_	Н	Sa	inty	DO Sat	uration	D	0	Turb	idity	S	S	Current Direction	Current Velocity
(soosy mm dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	('	C)		л	(r	pt)	(0	%)	(m	g/L)	(N	TU)	(mg	g/L)	(No current /	(No current /
(yyyy-mm-dd)		Contaction	condition	(1111:11111)	(m)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	9:08	0.08	1st	Middle	20.9	20.9	7.3	73	0.0	0.0	97.4	97.5	8.7	8.7	7.5	8.7	1.4	1.5	Downstream	0.16
	Ola	Sunny	Calm	9:08	0.08	2nd	Middle	20.9	20.5	7.3	7.3	0.0	0.0	97.6	37.3	8.7	0.7	9.9	0.7	1.5	1.5	Downstream	0.16
	U1b'	Sunny	Calm	10:35	0.12	1st	Middle	24.2	24.2	7.5	7.5	0.1	0.1	103.9	101.7	8.7	8.5	5.5	5.7	1.4	1 2	Downstream	0.03
	010	Sunny	Calm	10:35	0.12	2nd	Middle	24.2	24.2	7.5	7.3	0.1	0.1	99.4	101.7	8.3	0.5	5.9	5.7	1.2	1.5	Downstream	0.03
	G1a	Sunny	Calm	8:44	0.07	1st	Middle	20.7	20.7	7.7	7.7	0.0	0.0	90.7	90.6	8.1	8.1	8.7	8.7	4.1	3.5	Downstream	0.24
	Gia	Sunny	Calm	8:44	0.07	2nd	Middle	20.7	20.7	7.7	7.7	0.0	0.0	90.4	30.0	8.1	0.1	8.8	0.7	2.9	3.3	Downstream	0.24
2025-10-24	G1b	Sunny	Calm	8:30	0.32	1st	Middle	21.4	21.4	7.5	7.5	0.1	0.1	70.2	68.8	6.2	6.1	12.4	11.3	9.8	9.9	Downstream	0.13
2023-10-24	GID	Sunny	Calm	8:31	0.32	2nd	Middle	21.4	21.4	7.5	7.5	0.1	0.1	67.3	00.0	6.0	0.1	10.2	11.5	10.0	5.5	Downstream	0.13
	G1c	Sunny	Calm	11:09	0.09	1st	Middle	23.8	23.8	7.8	7.0	0.1	0.1	85.0	84.8	7.2	7.2	9.4	9.4	4.1	5.0	Downstream	0.05
	GIC	Sunny	Calm	11:09	0.09	2nd	Middle	23.8	23.0	7.8	7.0	0.1	0.1	84.5	04.0	7.1	7.2	9.4	3.4	5.8	5.0	Downstream	0.05
	G1d	Sunny	Calm	10:53	0.12	1st	Middle	24.1	24.1	8.0	9.0	0.1	0.1	65.4	65.4	5.5	5.5	61.3	60.3	25.0	24.0	Downstream	0.05
	GIU	Sunny	Calm	10:53	0.12	2nd	Middle	24.1	24.1	8.0	0.0	0.1	0.1	65.3	65.4	5.5	5.5	59.3	00.3	23.0	24.0	Downstream	0.05
	D1'	Sunny	Calm	11:27	0.40	1st	Middle	22.9	22.9	7.5	7.5	0.3	0.3	37.4	37.6	3.2	2.7	48.5	46.2	32.0	34.0	Downstream	0.08
	DI	Sunny	Calm	11:28	0.40	2nd	Middle	23.0	22.9	7.5	7.5	0.3	0.3	37.7	37.0	3.2	3.2	43.9	40.2	36.0	J4.U	Downstream	0.08


Date				Start Time	Water Depth		Sample Water Level	Temp	erature	_		Sal	nty	DO Sat	turation	D	0	Turb	idity	9	S	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	(°C)	р	п	(р	pt)	('	%)	(mg	J/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(yyyy-iiiii-uu)		condition	condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Cloudy	Calm	12:12	0.08	1st	Middle	27.8	27.8	7.4	7.4	0.0	0.0	93.3	93.3	8.0	9.0	7.6	8.0	2.5	2.5	Downstream	0.15
	Ola	Cloudy	Calm	12:12	0.08	2nd	Middle	27.8	27.0	7.4	7.4	0.0	0.0	93.3	95.5	8.0	0.0	8.4	0.0	2.5	2.5	Downstream	0.15
	U1b'	Cloudy	Calm	12:40	0.12	1st	Middle	24.3	24.4	7.6	7.6	0.1	0.1	77.9	77.5	6.5	6.5	5.3	5.4	1.9	2.0	Downstream	0.01
	010	Cloudy	Calm	12:40	0.12	2nd	Middle	24.4	24.4	7.6	7.0	0.1	0.1	77.0	//.5	6.4	0.5	5.6	3.4	2.0	2.0	Downstream	0.01
	G1a	Cloudy	Calm	11:47	0.12	1st	Middle	23.2	23.1	7.8	7.7	0.0	0.0	91.1	92.1	7.8	7.9	5.7	5.6	2.4	2.7	Downstream	0.16
	Gia	Cloudy	Calm	11:48	0.12	2nd	Middle	23.1	23.1	7.7	7.7	0.0	0.0	93.0	92.1	8.0	7.5	5.6	5.0	3.0	2.7	Downstream	0.16
2025-10-27	G1b	Cloudy	Calm	11:34	0.32	1st	Middle	23.8	23.8	7.6	7.6	0.1	0.1	44.0	44.2	3.7	5.7	14.7	15.1	9.0	11.0	Downstream	0.13
2023-10-27	GID	Cloudy	Calm	11:34	0.32	2nd	Middle	23.8	23.6	7.6	7.0	0.1	0.1	44.3	44.2	7.7	5.7	15.5	13.1	13.0	11.0	Downstream	0.13
	G1c	Cloudy	Calm	13:33	0.09	1st	Middle	24.9	24.9	7.9	7.9	0.1	0.1	80.9	80.9	6.7	6.7	7.5	7.5	2.0	5.7	Downstream	0.41
	GIC	Cloudy	Calm	13:33	0.09	2nd	Middle	24.9	24.5	7.9	7.5	0.1	0.1	80.8	00.9	6.7	0.7	7.5	7.5	9.4	5.7	Downstream	0.41
	G1d	Cloudy	Calm	13:10	0.21	1st	Middle	24.9	24.9	7.8	7.0	0.1	0.1	65.7	64.5	5.4	5.3	12.1	12.6	7.4	13.7	Downstream	0.03
	Giu	Cloudy	Calm	13:12	0.21	2nd	Middle	24.9	24.5	7.8	7.8	0.1	0.1	63.2	04.5	5.2	5.5	13.0	12.0	20.0	13.7	Downstream	0.03
	D1'	Cloudy	Calm	13:42	0.32	1st	Middle	24.8	24.8	7.7	7.7	0.3	0.3	26.2	25.5	2.2	2.1	17.2	16.9	1.1	4.4	Downstream	0.13
	DI	Cloudy	Calm	13:43	0.32	2nd	Middle	24.8	24.0	7.7	7.7	0.3	0.3	24.8	25.5	2.1	2.1	16.6	10.9	7.6	4.4	Downstream	0.13


Remark

Date				Start Time	Water Depth		Sample Water Level	Tempe	erature	_		Sal	inty	DO Sat	turation	D	00	Turt	oidity	9	SS	Current Direction	Current Velocity
(yyyy-mm-dd)	Station	Weather Condition	River Condition	(hh:mm)	(m)	Replicate	(Surface/Middle/	(°	C)	P	Н	(р	pt)	(0	%)	(mg	g/L)	(N	TU)	(m	g/L)	(No current /	(No current /
(уууу-шш-аа)		Contaction	condition	(1111:11111)	(111)		Bottom)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Downstream)	m/s)
	U1a	Sunny	Calm	12:45	0.10	1st	Middle	23.8	23.8	7.5	7.5	0.0	0.0	93.2	93.1	7.9	7.9	6.3	6.5	1.8	2.1	Downstream	0.12
	010	Sunny	Calm	12:46	0.10	2nd	Middle	23.8	25.0	7.5	7.5	0.0	0.0	93.0	55.1	7.9	7.5	6.8	0.5	2.4	2.1	Downstream	0.12
	U1b'	Sunny	Calm	13:13	0.12	1st	Middle	25.5	25.5	7.2	7.2	0.1	0.1	106.8	107.0	8.7	8.8	5.6	6.2	2.0	1.7	Downstream	0.10
	010	Sunny	Calm	13:13	0.12	2nd	Middle	25.5	25.5	7.2	7.2	0.1	0.1	107.1	107.0	8.8	0.0	6.8	0.2	1.4	1.7	Downstream	0.10
	G1a	Sunny	Calm	12:23	0.12	1st	Middle	24.5	25.0	7.7	7.7	0.1	0.1	92.6	92.5	7.7	7.7	7.4	7.2	2.9	3.0	Downstream	0.15
	Giu	Sunny	Calm	12:24	0.12	2nd	Middle	25.4	25.0	7.7	7.7	0.1	0.1	92.4	32.3	7.7	7.7	7.0	7.2	3.1	3.0	Downstream	0.15
2025-10-30	G1b	Sunny	Calm	12:11	0.35	1st	Middle	25.2	25.2	7.6	7.6	0.1	0.1	52.6	52.5	4.3	4.3	8.5	0.0	11.0	10.3	Downstream	0.12
2023-10-30	GID	Sunny	Calm	12:12	0.35	2nd	Middle	25.2	23.2	7.6	7.0	0.1	0.1	52.4	32.3	4.3	4.5	9.1	0.0	9.5	10.5	Downstream	0.12
	G1c	Sunny	Calm	13:34	0.09	1st	Middle	25.8	25.8	7.9	7.9	0.1	0.1	81.2	81.3	6.6	6,6	8.6	8.6	3.7	3,9	Downstream	0.21
	GIC	Sunny	Calm	13:34	0.09	2nd	Middle	25.8	23.0	7.9	7.5	0.1	0.1	81.3	01.3	6.6	0.0	8.7	0.0	4.1	3.5	Downstream	0.21
	G1d	Sunny	Calm	13:24	0.13	1st	Middle	25.9	25.9	7.8	7.8	0.1	0.1	69.2	68.7	5.6	5.6	26.5	26.1	4.3	4.9	Downstream	0.12
	Giu	Sunny	Calm	13:25	0.13	2nd	Middle	25.9	23.5	7.8	7.0	0.1	0.1	68.2	00.7	5.5	3.0	25.7	20.1	5.5	4.5	Downstream	0.12
	D1'	Sunny	Calm	13:44	0.32	1st	Middle	26.0	26.0	7.7	7.7	0.3	0.3	33.0	32.6	2.7	2.6	20.0	20.5	19.0	18.0	Downstream	0.12
	<i>D</i> 1	Sunny	Calm	13:44	0.32	2nd	Middle	26.0	20.0	7.7	′./	0.3	0.3	32.1	32.0	2.6	2.0	21.0	20.5	17.0	10.0	Downstream	0.12
Pomark		Action Level F		13:44	0.32	2na	Middle	26.0		7.7		0.3		32.1		2.6		21.0		17.0		Downstream	0.12

ANNEX F4

EVENT AND ACTION PLAN FOR WATER QUALITY MONITORING

ANNEX F4 EVENT AND ACTION PLAN FOR WATER QUALITY MONITORING

Event	Action			
	ET	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD. 	Confirm receipt of notification of exceedance in writing.	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice.
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properly implemented. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Consider changes of working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures.

Event	Action			
	ET	IEC	ER	Contractor
Limit level being exceeded by one sampling day	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented. 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properly implemented. Request Contractor(s) to critically review the working methods. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days. Implement the agreed mitigation measures.
Limit level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD and AFCD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properly implemented. Request Contractor(s) to critically review the working methods. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures

Event	Action			
	ET	IEC	ER	Contractor
	measures and ensure that they are implemented.			

ANNEX G

WASTE FLOW TABLE

Waste Flow Table of All Works Contracts

Month	Contract No.	Inert C&D Materials ^{(a) (b)}	Imported Fill ^(c)	Inert Constrction Waste Reused ^(d)	Non-inert Construction Waste (e)	Recycable Materials (f)	Chemical Waste
		(m ³)	(m ³)	(m ³)	(tonnes)	(tonnes)	(tonnes)
	ND/2024/09	0.00	0.00	0.00	136.07	0.000	0.00
September 2025	ND/2024/10	13.75	0.00	0.00	27.95	0.000	0.00
	Sub-total	13.75	0.00	0.00	164.02	0.000	0.00
	ND/2024/09	0.00	0.00	0.00	5.00	0.003	0.00
October 2025	ND/2024/10	0.00	0.00	0.00	35.73	0.000	0.00
	Sub-total	0.00	0.00	0.00	40.73	0.003	0.00
Tota	ıl	13.75	0.00	0.00	204.75	0.003	0.00

Note:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) The conversion factor for inert C&D Materials for ND/2024/10 is 2.4 tonnes/m³.
- (c) Imported materials from any source outside of the Project.
- (d) Reuse of inert construction waste generated under the Project.
- (e) Non-inert construction wastes include general refuse disposed at landfill.
- (f) Recyclable materials include metals, paper, cardboard, plastics and others.

ANNEX H

ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	ement Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
Air Quality	Impact			<u>'</u>				
3.8.1.1	All DPs and Non-DPs	 Dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation and good site practices listed below should be carried out to further minimize construction dust impact. Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. For the work sites close to the ASRs with a separation distance less than 10 m, provide hoardings of not less than 3 m high from ground level along the site boundary; for the other work sites in general, provide hoarding not less than 2.4m high from ground level along site boundary except for site entrance or exit. Avoid position of material stockpiling areas, major haul roads and dusty works within the construction site close to concerned ASRs. Avoid unnecessary exposed earth. 	Construction Sites / Construction Phase	Contractor		✓		Air Air Pollution Control Ordinance (APCO) Air Quality Objectives (AQO) Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM)

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		 Locate all the dusty activities away from any nearby ASRs as far as practicable. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs. Imposition of speed controls for vehicles on site haul roads. Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 						
3.8.1.2	All DPs and Non-DPs	Guidelines stipulated in EPD's Recommended Pollution Control Clauses for Construction Contracts should be incorporated in the contract document to abate dust impacts. These clauses include: The Contractor shall observe and comply with APCO and its subsidiary regulation, particularly the Air Pollution Control (Construction Dust) Regulation.	Construction Sites / Construction Phase	Contractor		✓		APCO Air Pollution Control (Construction Dust) Regulation AQO EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
		 The Contractor shall undertake at all times to prevent dust nuisance as a result of the construction activities. The Contractor shall ensure that there will be adequate water supply /storage for dust suppression. The Contractor shall devise and arrange methods of working and carrying out the works in such a manner so as to minimize dust impact on the surrounding environment, and shall provide experienced personnel with suitable training to ensure that these methods are implemented properly. Before the commencement of any work, the Contractor may be required to submit the methods of working, plant, equipment and air pollution control system to be used on the site for the Engineer inspection and approval. 						
3.8.1.3	All DPs and Non-DPs	In order to help reduce carbon emission and pollution, timely application of temporary electricity and water supply would be made and electric vehicles would be adopted in accordance with DEVB TC(W) No. 13/2020 – Timely Application of Temporary Electricity and Water Supply for Public Works Contracts and Wider Use of Electric Vehicles in Public Works Contracts in the Project.	Construction Sites / Construction Phase	Contractor		✓		• DEVB TC(W) No. 13/2020
3.8.1.4	All DPs and Non-DPs	To minimise the exhaust emission from non-road mobile machinery (NRMMs) during the construction phase, the following measures should be applied as far as practicable:	Construction Sites / Construction Phase	Contractor		√		Air Pollution Control (Non-road Mobile Machinery)

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		 Connect construction plant and equipment to main electricity supply and avoid use of diesel generators and diesel-powered equipment; Avoid exempted NRMMs as far as practicable; and Deploy electrified NRMMS as far as practicable. 						(Emission) Regulation
Noise Impac	t	,	'	'			!	
4.8.1.1 - 4.8.1.2	All DPs and Non-DPs	Adopting Quality Powered Mechanical Equipment (QPME) is recommended. The use of QPME associated with the construction works is prescribed in EPD's QPME database, which contains the sound power levels (SWLs) for quality/quiet PME of various types, brands and models.	Construction sites	Contractor		1		• EIAO-TM
4.8.1.3	All DPs and Non-DPs	Movable noise barriers have been proposed for excavator, mobile crane, loader, backhoe, dump truck, dump truck with grab, piling (large diameter bored, RCD), piling (large diameter bored, oscillator), crawler crane (mobile, diesel), roller (vibratory), paint line marker, cherry picker, crane lorry, crane, welding set, lorry, breaker (hand-held, mass >10kg and <20kg), poker (vibratory, hand-held), concrete lorry mixer, concrete mixer, bar bender and cutter (electric), saw (circular, wood), water pump (submersible, electric), breaker (hand-held, mass <= 10kg), piling (vibrating hammer), chisel, drill rig (rotary type (diesel)), asphalt paver, cutter (circular, steel), drilling rig, etc. Movable temporary noise barriers that can be located close to noisy plant	Construction sites	Contractor		✓ ————————————————————————————————————		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	Des C O	0	& Guidelines
		and be moved iteratively with the plant along a worksite can be very effective for screening noise from noise sensitive receivers (NSRs). A cantilevered top cover would be required to achieve screening benefits at upper floors of noise sensitive receivers (NSRs).						
4.8.1.4	All DPs and Non-DPs	Use of full enclosure for generator (silenced), Generator for HAC, and generator for DCM.	Construction sites	Contractor		√		EIAO-TM
4.8.1.5	All DPs and Non-DPs	Use of non-percussive equipment and method, such as silent piling by "Press-in" Method, to carry out sheet piling works.	Construction sites	Contractor		✓		EIAO-TM
4.8.1.6	All DPs and Non-DPs	Use of non-percussive equipment and method, such as hydraulic crusher, chemical expansion agent, quieter type blade saw and bursting system to carry out demolition/concrete breaking/removal activities as far as practicable	Construction sites	Contractor		✓		EIAO-TM
4.8.1.7	All DPs and Non-DPs	For Ground Treatment – High Arsenic Containing Soil, the construction equipment i.e. roller and excavator should not be used simultaneously with backhoe and bulldozer.	Construction sites of A.2.1-1-1, A.2.1-2-1 and A.5.3-0-1	Contractor		1		EIAO-TM
4.8.1.11	All DPs and Non-DPs	Construction Noise Management Plan would be prepared before tender stage and before commencement of construction works to verify the inventory of noise sources, and to assess the effectiveness and practicality of all identified measures for mitigating the construction noise impact of the project.	Construction sites	CEDD/ Contractor		✓		• EIAO-TM

Water Quality Impact

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	ement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	o	& Guidelines
5.7.1.3	All DPs and Non-DPs	Surface run-off from construction site should be discharged into storm drains via adequately designed sand / silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided as necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	Construction Sites / Construction Phase	Contractor		1		Water Pollution Control Ordinance (WPCO) EIAO-TM Professional Persons Environmental Consultative Committee Practice Notes (ProPECC PN) 2/23
5.7.1.4	All DPs and Non-DPs	Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly (as well as at the onset of and after each rainstorm) to prevent overflows and localised flooding. Before disposal at the public fill reception facilities, the deposited silt and grit should be solicited in such a way that it can be contained and delivered by dump truck instead of tanker truck. Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains.	Construction Sites / Construction Phase	Contractor		V		WPCO EIAO-TM ProPECC PN 2/23
5.7.1.5	All DPs and Non-DPs	Construction works should be programmed to minimise soil excavation in the wet season (i.e. April to September). If soil excavation cannot be avoided in these months or at any time of year when rainstorms are likely, temporarily exposed	Construction Sites / Construction Phase	Contractor		√		WPCO EIAO-TM ProPECC PN 2/23

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	lementa Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	0	u
		slope surfaces should be covered e.g. by tarpaulin, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided (e.g. along the crest / edge of excavation) to prevent storm run-off from washing across exposed soil surfaces. Arrangements should always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of rainstorm.						
5.7.1.6	All DPs and Non-DPs	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	Construction Sites / Construction Phase	Contractor		√		WPCO EIAO-TM ProPECC PN 2/23
5.7.1.7	All DPs and Non-DPs	Measures should be taken to minimise the ingress of rainwater into trenches. If excavation of trenches in the wet season is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	Construction Sites / Construction Phase	Contractor		1		WPCOEIAO-TMProPECC PN 2/23
5.7.1.8	All DPs and Non-DPs	Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent	Construction Sites / Construction Phase	Contractor		√		WPCO EIAO-TM ProPECC PN 2/23

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Stage* Releva		_		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		the washing away of construction materials, soil, silt or debris into any drainage system.						
5.7.1.9	All DPs and Non-DPs	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm runoff from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	Construction Sites / Construction Phase	Contractor		✓		WPCO EIAO-TM ProPECC PN 2/23
5.7.1.10	All DPs and Non-DPs	Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be recirculated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	Construction Sites / Construction Phase	Contractor		1		WPCOEIAO-TMProPECC PN 2/23
5.7.1.11	All DPs and Non-DPs	All vehicles and plants should be cleaned before they leave a construction site to minimise the deposition of earth, mud and debris on roads. A wheel washing bay should be provided at every site exit if practicable and washwater should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	Construction Sites / Construction Phase	Contractor		√		EIAO-TM WPCO Waste Disposal Ordinance (WDO) ProPECC PN 2/23

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		Stage		Stage*		Implementation Stage*			Relevant Legislation & Guidelines • WPCO • EIAO-TM • ProPECC PN 2/23 • Technical Memorandum on Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters (TM-DSS) • WPCO • EIAO-TM • WDO • ProPECC PN 2/23 • WPCO • EIAO-TM • ProPECC PN 2/23
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines						
5.7.1.12	All DPs and Non-DPs	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralised to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralised wastewater should be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters.	Construction Sites / Construction Phase	Contractor		✓		EIAO-TM ProPECC PN 2/23 Technical Memorandum on Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal						
5.7.1.13	All DPs and Non-DPs	Good site practices should be adopted to remove rubbish and litter from construction site so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction site on a regular basis.	Construction Sites / Construction Phase	Contractor		✓		• EIAO-TM • WDO						
5.7.1.14	All DPs and Non-DPs	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated	Construction Sites / Construction Phase	Contractor		✓		EIAO-TMProPECC PN 2/23						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent		lementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	Relevant Legislation & Guidelines • WPCO • EIAO-TM • ProPECC PN 2/23 • ETWB TC (Works) No. 5/2005 • WPCO • EIAO-TM • ProPECC PN 2/23 • WPCO • EIAO-TM • ProPECC PN 2/23 • TM-DSS
		effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence.						
5.7.1.15 - 5.7.1.16	All DPs and Non-DPs	The practices outlined in Environment, Transport and Works Bureau (ETWB) TC (Works) No. 5/2005 "Protection of natural streams/rivers from adverse impacts arising from construction works" should also be adopted where applicable to minimise the water quality impacts upon any natural streams or surface water systems.	Construction Sites / Construction Phase	Contractor		✓		EIAO-TMProPECC PN 2/23ETWB TC (Works)
5.7.1.17	All DPs and Non-DPs	The construction works for removal and diversion of watercourses should be undertaken within a dry zone. Cofferdams or similar impermeable sheet pile walls should be used as necessary to isolate the works areas from the neighbouring waters.	Construction Sites / Construction Phase	Contractor		✓		• EIAO-TM
5.7.1.18	All DPs and Non-DPs	Construction works at watercourse should be undertaken only after flow diversion or dewatering operation is fully completed to avoid water flow in the works area. Dewatering of watercourse should be performed by diverting the water flow to new or temporary drainage. Where necessary, cofferdams or similar impermeable sheet pile walls should be used to isolate the works areas from neighbouring waters. The permanent or temporary drainage for carrying the diverted flow from existing watercourse to be removed should be constructed and completed before dewatering of that existing watercourse.	Construction Sites / Construction Phase	Contractor		✓ ·		EIAO-TMProPECC PN 2/23

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lementa Stage*	ementation Stage* Relevant Legisl & Guideline	
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		Construction of all the proposed permanent and temporary drainage should be undertaken in a dry zone prior to receiving any water flow.						
5.7.1.19	All DPs and Non-DPs	The Contractor should provide a dry zone for all the construction works to be undertaken in watercourses and stormwater drainage following the tentative works sequence as described above or using other approved methods as appropriate to suit the works condition. The flow diversion works should be conducted in dry season, where possible, when the flow in the watercourse is low. The wastewater and ingress water from the site should be properly treated to comply with the WPCO and the TM-DSS before discharge.	Construction Sites / Construction Phase	Contractor		1		WPCOEIAO-TMProPECC PN 2/23TM-DSS
5.7.1.20	All DPs and Non-DPs	The site practices outlined in the ProPECC PN 2/23 "Construction Site Drainage" and ETWB TC (Works) No. 5/2005 "Protection of natural streams/rivers from adverse impacts arising from construction works" should be adopted for the proposed demolition or diversion of watercourses where applicable.	Construction Sites / Construction Phase	Contractor		1		 WPCO EIAO-TM ProPECC PN 2/23 ETWB TC (Works) No. 5/2005
5.7.1.21	DP1, DP6, DP7 of EIA Report, Non- DPs	Construction works at the existing ponds / wet areas should be conducted only after dewatering of these ponds / wet areas is fully completed. The drained water generated from the dewatering of these ponds / wet areas to be removed should be temporarily stored in appropriate storage tanks or containers for reuse on-site as far as possible. Any surplus drained water should be tankered away for disposal at the sewage treatment works	Construction Sites / Construction Phase	Contractor		√		WPCOEIAO-TMProPECC PN 2/23

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	-	ementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	WDO ProPECC PN 2/23 ETWB TCW No. 34/2002 WPCO WDO ProPECC PN 2/23 Waste Disposal (Chemical Waste) (General) Regulation EIAO-TM
		(STW) in a controlled manner. No direct discharge of drained water to the stormwater drainage system or marine water should be allowed.						
5.7.1.22	All DPs and Non-DPs	All excavated materials generated from construction of the proposed river revitalisation works, removal and diversion of watercourses, removal and construction works in ponds and wet areas should be collected and handled in compliance with the WDO. Excavated sediment, if any, generated from the excavation activities in the channels should be tested and classified in accordance with the ETWB TCW No. 34/2002 for determining the disposal arrangement for the sediment. The disposal of excavated sediments should be minimised according to the relevant requirements in the Waste Management Implications in Section 7. No direct disposal of the construction wastes or excavated materials into the stormwater drainage system and marine water would be allowed.	Construction Sites / Construction Phase	Contractor		√		ProPECC PN 2/23ETWB TCW No.
5.7.1.23	All DPs and Non-DPs	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The WDO (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes. The Contractor is also recommended to develop management procedures for chemicals used and prepare an emergency spillage handling procedure to deal with chemical spillage in case of accident occurs.	Construction Sites / Construction Phase	Contractor		√		 WDO ProPECC PN 2/23 Waste Disposal (Chemical Waste) (General) Regulation

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		ation	Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
5.7.1.24	All DPs and Non-DPs	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	Construction Sites / Construction Phase	Contractor		√		 WPCO WDO ProPECC PN 2/23 Waste Disposal (Chemical Waste) (General) Regulation EIAO-TM
5.7.1.25	All DPs and Non-DPs	Disposal of chemical wastes should be carried out in compliance with the WDO. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the WDO should be followed to avoid leakage or spillage of chemicals. General requirements are given as follows: • Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport; • Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents; and • Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.	Construction Sites / Construction Phase	Contractor		✓		WPCO WDO ProPECC PN 2/23 Waste Disposal (Chemical Waste) (General) Regulation EIAO-TM
5.7.1.26	All DPs and Non-DPs	No discharge of sewage to the stormwater drains or inland water will be allowed. Adequate and sufficient portable chemical toilets should be provided in the works areas to handle sewage from construction workforce. A licensed collector	Construction Sites / Construction Phase	Contractor		√		WPCOEIAO-TMProPECC PN 2/23TM-DSS

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		should be employed to clean and maintain the chemical toilets on a regular basis.						
5.7.1.27	All DPs and Non-DPs	Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the surrounding environment. Regular environmental audit of the construction site should be conducted to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site.	Construction Sites / Construction Phase	Contractor		√		WPCO EIAO-TM ProPECC PN 2/23
5.7.1.28	All DPs and Non-DPs	Remediation of contaminated land should be properly conducted following the recommendations of Land Contamination Assessment in Section 8. Any excavated contaminated material and exposed contaminated surface should be properly housed and covered to avoid generation of contaminated runoff. Open stockpiling of contaminated materials should not be allowed. Any contaminated runoff or wastewater generated from the land decontamination processes should be properly collected and diverted to wastewater treatment facilities (WTF) as necessary. The WTF shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as total petroleum hydrocarbon) to an undetectable range. All treated effluent from the wastewater treatment system shall meet the requirements as stated in TM-DSS and should be either discharged	Construction Sites / Construction Phase	Contractor		1		WPCO EIAO-TM ProPECC PN 2/23 TM-DSS

EIA Ref.	Relevance to Designated Project (DP)	Environmental Protection Measures	Location / Duration of Measures / Timing of Completion of Measures	Implementation Agent	Implementation Stage*			Relevant Legislation & Guidelines
					Des	С	O	& Guidelines
		into the foul sewers or tankered away for proper disposal.						
5.7.1.29	All DPs and Non-DPs	No direct discharge of groundwater from contaminated areas should be adopted. Prior to any excavation works within the potentially contaminated areas, the baseline groundwater quality in these areas should be reviewed based on the past relevant site investigation data and any additional groundwater quality measurements to be performed with reference to "Guidance Note for Contaminated Land Assessment and Remediation" and the review results should be submitted to EPD for examination. If the review results indicated that the groundwater to be generated from the excavation works would be contaminated, this contaminated groundwater should be either properly treated or properly recharged into the ground in compliance with the requirements of the TM-DSS. If wastewater treatment is to be deployed for treating the contaminated groundwater, the wastewater treatment unit shall deploy suitable treatment processes (e.g. oil interceptor / activated carbon) to reduce the pollution level to an acceptable standard and remove any prohibited substances (such as total petroleum hydrocarbon) to an undetectable range. All treated effluent from the wastewater treatment plant shall meet the requirements as stated in the TM-DSS and should be either discharged into the foul sewers or tankered away for proper disposal.	Construction Sites / Construction Phase	Contractor		✓		WPCO TM-DSS ProPECC PN 2/23 Guidance Note for Contaminated Land Assessment and Remediation

EIA Ref.	Relevance to Designated Project (DP)	Environmental Protection Measures	Location / Duration of Measures / Timing of Completion of Measures	Implementation Agent	Implementation Stage*			Relevant Legislation
					Des	С	O	& Guidelines
5.7.1.30	All DPs and Non-DPs	If deployment of wastewater treatment is not feasible for handling the contaminated groundwater, groundwater recharging wells should be installed as appropriate for recharging the contaminated groundwater back into the ground. The recharging wells should be selected at places where the groundwater quality will not be affected by the recharge operation as indicated in Section 2.3 of TM-DSS. The baseline groundwater quality should be determined prior to the selection of the recharge wells, and submit a working plan to EPD for agreement. Pollution levels of groundwater to be recharged shall not be higher than pollutant levels of ambient groundwater at the recharge well. Groundwater monitoring wells should be installed near the recharge points to monitor the effectiveness of the recharge wells and to ensure that no likelihood of increase of groundwater level and transfer of pollutants beyond the site boundary. Prior to recharge, free products should be removed as necessary by installing the petrol interceptor. The Contractor should apply for a discharge licence under the WPCO through the Regional Office of EPD for groundwater recharge operation or discharge of treated groundwater.	Construction Sites / Construction Phase	Contractor		✓		WPCO EIAO-TM ProPECC PN 2/23 TM-DSS
5.7.1.31	All DPs and Non-DPs	The following measures should be implemented by the Contractors to minimise the chance of emergency construction site discharge (due to failure of treatment facilities such as sand traps,	Construction Sites / Construction Phase	Contractor		√		WPCOEIAO-TMProPECC PN 2/23TM-DSS

EIA Ref.	Relevance to Designated Project (DP)	Environmental Protection Measures	Location / Duration of Measures / Timing of Completion of Measures	Implementation Agent	Implementation Stage*			Relevant Legislation
					Des	С	O	& Guidelines
		silt traps, sedimentation basins, oil interceptors etc.): • Provide spare or standby treatment facilities of suitable capacities for emergency replacement in case damage or defect or malfunctioning of the duty treatment facilities is observed; • Conduct daily integrity checking of the construction site drainage and treatment facilities to inspect malfunctions, in particular before, during and after a storm event; and • Carry out regular maintenance or desilting works to maintain effectiveness of the construction site drainage and treatment facilities in particular before, during and after a storm event.						
5.7.1.32	All DPs and Non-DPs	An Emergency Response Plan (ERP) should be developed to minimise the potential impact from construction site discharges under failure of treatment facilities during emergency situations or inclement weather. The ERP should give the emergency contacts to mobilise flood retention facilities and stakeholders to be notified as well as the details of the proposed construction site drainage system and the design and operation of duty and standby treatment facilities. The ERP should also provide the procedures and guidelines for routine integrity checking and maintenance of the drainage system and treatment facilities as well as the emergency response and rectification procedures to restore normal operation of the	Construction Sites / Construction Phase	Contractor		√		 WPCO EIAO-TM ProPECC PN 2/23 TM-DSS

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Timing of	of Measures /	Implementation	Implementation Stage*		Stage*			Relevant Legislation & Guidelines WDO ETWB TCW No. 19/2005 DEVB TCW No. 06/2010 Project Administration Handbook (PAH) for Civil Engineering Works
	Project (DP)		Completion of Measures	Agent	Des	С	O	Relevant Legislation & Guidelines • WDO • ETWB TCW No. • 19/2005 • DEVB TCW No. 06/2010 • Project Administration Handbook (PAH) for Civil			
		treatment facilities in case of treatment failure during emergency situation or inclement weather. The Best Management Practices (BMPs) in controlling water pollution arising from the construction activities and an event and action plan with action and limit levels for water quality monitoring should be included in the ERP. The ERP should be submitted to the EPD for approval before commencement of the construction works.									
Waste Mana	gement Implica	tion		'							
7.6.1.1 – 7.6.1.2	All DPs and Non-DPs	 Waste Management Hierarchy The waste management hierarchy should be applied including the following in descending preference: Avoidance and minimisation of waste generation; Reuse of materials as far as practicable; Recovery and recycling of residual materials where possible; and Treatment and disposal of waste according to relevant laws, guidelines and good practices. To minimize C&D materials generation and encourage proper management of such materials, a C&DMMP should be prepared. An EMP and tripticket system are recommended for monitoring management of waste. Specific measures targeting the mitigation of impacts in works areas and the transportation of waste off-site should be provided to minimise the potential impacts to the surrounding environment. 	Construction Sites	Contractor		√		 ETWB TCW No. 19/2005 DEVB TCW No. 06/2010 Project Administration Handbook (PAH) for Civil 			

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	-	lement Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
7.6.1.3	All DPs and Non-DPs	Good Site Practices The following good site practices are recommended during the construction phase: Nomination of an approved personnel, such as a site manager, to be responsible for the implementation of good site practices; Training of site personnel in site cleanliness, proper waste management and chemical handling procedures; Provision of sufficient waste disposal points and regular collection of waste for disposal; Adoption of appropriate measures to minimise windblown litter and dust during handling, transportation and disposal of waste; and Preparation of a WMP in accordance with the ETWB TCW No. 19/2005 Environmental Management on Construction Sites and submitted it to the Engineer for approval.	Construction Sites	Contractor		1		WDO Public Cleansing and Prevention of Nuisances Regulation (Cap. 132BK)
7.6.1.4	All DPs and Non-DPs	 Waste Reduction Measures Recommendations to achieve waste reduction include: Segregate and store different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Adopt proper storage and site practices to minimise the potential for damage to, and contamination of, construction materials; 	Construction Sites	Contractor		✓		• WDO

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
		 Plan the delivery and stock of construction materials carefully to minimise the amount of waste generated; Sort out demolition debris and excavated materials from demolition works to recover reusable / recyclable portions (i.e. soil, rock, broken concrete, etc.); Maximise the use of reusable steel formwork to reduce the amount of C&D materials; Minimise over ordering of concrete, mortars and cement grout by doing careful check before ordering; and Adopt pre-cast construction method instead of cast-in-situ method for construction of concrete structures as far as possible. 						
7.6.1.5	All DPs and Non-DPs	Storage of Waste Recommendations to minimise the impacts include: Waste, such as soil, should be handled and stored well to ensure secure containment, thus minimising the potential of pollution; Maintain and clean storage areas routinely; Stockpiling area should be provided with covers and water spraying system to prevent materials from being wind-blown or washed away; and Different locations should be designated to stockpile each material to enhance reuse.	Construction Sites	Contractor		✓		• WDO
7.6.1.6	All DPs and Non-DPs	Collection of Waste Waste hauler with appropriate permits should be employed by the Contractor for the collection and	Construction Sites	Contractor		√		• WDO

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		lementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	C	O	Relevant Legislation & Guidelines • WDO
		transportation of waste from works areas to respective disposal outlets. The following recommendation should be implemented to minimise the impacts: Remove waste in timely manner; Employ the trucks with cover or enclosed containers for waste transportation; Obtain relevant waste disposal permits from the appropriate authorities; and Dispose of waste at licensed waste disposal facilities.						
7.6.2.1	All DPs and Non-DPs	Construction and Demolition Materials Careful design, planning together with good site management can reduce over-ordering and generation of Construction and Demolition (C&D) materials such as concrete, mortar and cement grouts. Formwork should be designed to minimise the use of standard wooden panels, so that high reuse levels can be achieved. Alternatives such as steel formwork or plastic facing should be considered to increase the potential for reuse.	Construction Sites	Contractor		1		• WDO
7.6.2.2	All DPs and Non-DPs	The inert C&D materials with suitable characteristics / size should be reused on-site as fill or recycled as aggregate for other projects as far as practicable. When disposing C&D material at a public filling reception facility for beneficial reuse, the material should only consist of soil, rock, concrete, brick, cement plaster / mortar, inert building debris, aggregates and asphalt. The material should be free from household refuse, plastic, metals, industrial and chemical waste,	Construction Sites	Contractor		√		• WDO

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		animal and vegetable matter, and other material considered to be unsuitable by the Filling Supervisor. Prior to disposal of noninert C&D materials, wood, steel and other metals should also be separated for reuse and / or recycling where practicable so as to minimise the quantity of waste to be disposed of at landfill.						
7.6.2.3	All DPs and Non-DPs	Suitable areas should be designated within the site boundaries for sorting and providing temporary stockpiling of C&D materials. Within stockpile areas, the following measures should be taken to control potential environmental impacts or nuisance: • Surface of stockpiled soil should be regularly wetted with water especially during dry season; • Disturbance of stockpile soil should be minimised; • Stockpiled soil should be properly covered with tarpaulin especially when heavy storms are predicted; and • Stockpiling areas should be enclosed where space is available.	Construction Sites	Contractor		✓		• WDO • ETWB TCW No.19/2005
7.6.2.4	All DPs and Non-DPs	In order to monitor the delivery of C&D materials at the designated public fill reception facility and landfill and to control fly-tipping, a trip-ticket system should be included. A recording system for the amount of waste generated, recycled and disposed, including the disposal sites, should also be set up. Warning signs should be put up to remind the designated disposal sites. CCTV should	Construction Sites	Contractor		✓		WDO DEVB TC(W) No.06/2010 Land (Miscellaneous Provisions) Ordinance (Cap. 28)

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent		plementation Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	Relevant Legislation & Guidelines APCO Code of Practice on Handling, Transportation and Disposal of Asbestos Waste ProPECC PN 2/97 Handling of Asbestos Containing Materials in Buildings
		also be installed at the vehicular entrance and exit of the site to monitor handling of C&D materials disposal. To prohibit illegal dumping and landfilling of C&D materials, as well as proper delivery to concurrent project sites for re-use, the dump trucks engaged on site should be equipped with GPS or equivalent automatic system for real time tracking and monitoring of their travel routings, parking locations and disposal activities.						
7.6.2.5 – 7.6.2.7	All DPs and Non-DPs	Due to the potential large amount of asbestos containing materials (ACM) during the site clearance stage, asbestos investigation is required. However, as asbestos investigation will involve a large number of buildings and most premises will involve private access, which cannot be obtained at this stage, it is considered that an asbestos specialist shall be employed by the responsible parties during the construction stage to investigate this issue. Sufficient and reasonable lead time shall be allowed for preparation, vetting and implementation of Asbestos Investigation Report and Asbestos Abatement Plan in accordance with Air Pollution Control Ordinance before commencement of any demolition or site clearance work. Some key precautionary measures related to the handling and disposal of asbestos are listed as following: • Adoption of protection, such as full containment, mini containment, or segregation of work area;	Construction Sites	Contractor		✓		 Code of Practice on Handling, Transportation and Disposal of Asbestos Waste ProPECC PN 2/97 Handling of Asbestos Containing Materials in

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*				ation	Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidennes		
		 Provision of decontamination facilities for cleaning of workings, equipment and bagged waste before leaving the work area; Adoption of engineering control techniques to prevent fibre release from work area, such as use of negative pressure equipment with high efficiency particulate air (HEPA) filters to control air flow between the work area and the outside environment; Wetting of asbestos containing materials before and during disturbance, minimising the breakage and dropping of asbestos containing materials, and packing of debris and waste immediately after it is produced; Cleaning of work area by wet wiping and vacuuming with HEPA-filtered vacuum cleaner; Coating on any surfaces previously in contact with or contained by asbestos with a sealant; Proper bagging, safe storage and disposal of asbestos and asbestos-contaminated waste; Pre-treatment of all effluent from the work area before discharged; and Air monitoring strategy to check the leakage and clearance of the work area during and after the asbestos work. 								
7.6.2.9 – 7.6.2.10	All DPs and Non-DPs	Chemical Waste For those processes which generated chemical waste, it may be possible to find alternatives to eliminate the use of chemicals, to reduce the generation quantities or to select a chemical type	Construction Sites	Contractor		√		Waste Disposal (Chemical Waste) General) Regulation		

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		ement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
		of less impact on environment, health and safety as far as possible. If chemical waste is produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Waste. Chemical waste should be stored in appropriate containers and collected by a licensed chemical waste contractor. Chemical waste (e.g. spent lubricant oil) should be recycled at an appropriate facility as far as possible, while chemical waste that cannot be recycled should be disposed of at either the Chemical Waste Treatment Centre (CWTC), or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.						Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
7.6.2.11 – 7.6.2.12	All DPs and Non-DPs	General refuse General refuse should be stored in enclosed bins or compaction units separate from C&D materials and chemical wastes. A reputable waste collector should be employed by the contractor to remove general from the site, separately from C&D materials and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. The collected general refuse would be disposed of at designated landfill. Clearly labelled recycling bins should be provided on site in order to encourage segregation and recycling of aluminium and plastic wastes, and wastepaper in order to reduce general refuse production.	Construction Sites	Contractor		√ ·		• WDO

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	C	0	& Guidelines
		The contractor should carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins should also be provided onsite as reminders. The recyclable waste materials should then be collected by reliable waste recycling agents on a daily basis.						
7.6.2.13	All DPs and Non-DPs	Excavated Sediment Since the amount of excavated sediment generated from the pond excavation works is expected to be small, all excavated sediment will be treated and reused on-site as backfilling materials for the Project. This approach avoids the need for off-site disposal that may result in impacts on the marine environment. In addition, all construction works near the watercourses should be undertaken within a dry zone and during dry season to avoid adverse impacts to the environment. The excavated sediment, if stockpiled on site, should be stored in enclosed containers and transported to the on-site treatment facilities as soon as practicable to minimise any potential odour impacts	Construction Sites	Contractor		✓		• WDO
7.6.2.14	All DPs and Non-DPs	Floating Refuse In case of floating refuse is identified, the floating materials should be removed and eventually stored and disposed of together with the general refuse, after separating the recyclables for recycling. Any floating refuse trapped within the Project area will be collected by the Contractor	Construction Sites	Contractor		√		• WDO

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lementation Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		and disposed together with other general refuse. Apart from collecting and storing waste with good waste management practice on site to avoid having waste transported to river channels or water bodies under extreme weather conditions, the contractor should be responsible for the collection of refuse, if any, within the works area. Contractor shall collect and remove floating refuse at regular intervals on a daily basis to keep river channels or water bodies within the Project area and the neighbouring water free from rubbish during the construction phase.						
Land Contan	nination					ı		
8.8.3.2 - 8.8.3.8	All DPs and Non-DPs	Potentially Contaminated Sites Prior to development of these sites, the Project Proponent should appoint a consultant to re- appraise these sites to update the corresponding findings and sampling and testing requirements presented in the Contamination Assessment Plan (CAP). Supplementary CAP(s), incorporating the findings of the site re-appraisal and the updated sampling and testing strategy, should be prepared and submitted to EPD for approval prior to conducting any site investigation (SI) works. SI works should then be carried out according to the supplementary CAP(s). Contamination Assessment Report (CAR(s)) and, if contaminated soil and/or groundwater identified, Remediation Action Plan (RAP(s)) should be prepared and submitted to EPD for approval.	All Potentially Contaminated Sites as listed in CAP / After the land is resumed and handed over to the Project Proponent and prior to commencement of any remediation / construction works.	Project Proponent / Contractor		✓		Annex 19 of the EIAO-TM Guidance Note for Contaminated Land Assessment and Remediation (EPD, Revised in April 2023) Practice Guide for Investigation and Remediation of Contaminated Land (EPD, Revised in April 2023) Guidance Manual for Use of Riskbased Remediation

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines Goals for Contaminated Land Management (EPD, Revised in April 2023) Annex 19 of the EIAO-TM Guidance Note for Contaminated Land Assessment and Remediation (EPD, Revised in April 2023) Practice Guide for Investigation and Remediation of Contaminated Land (EPD, Revised in April 2023) Revised in April 2023)
	Project (DP)		Completion of Measures	Agent	Des	С	O	Goals for Contaminated Land Management (EPD, Revised in April 2023) • Annex 19 of the EIAO-TM • Guidance Note for Contaminated Land Assessment and Remediation (EPD, Revised in April 2023) • Practice Guide for Investigation and Remediation of Contaminated Land (EPD, Revised in April
		For the nine (9) sites (namely S201, S202, S301, S302, W101, W102, W103, W104 and W105), the Project Proponent shall carry out site investigation and sampling works in accordance with the CAP in Appendix 8.1 of the EIA Report at a later stage.						Contaminated Land Management (EPD, Revised in
8.8.3.9 - 8.8.3.12	All DPs and Non-DPs	Sites Requiring Further Appraisal & Non-Contaminated Sites After the sites are handed over to the Project Proponent for development, the Project Proponent should appoint a consultant for site re-appraisal to assess the latest land uses and site conditions. If any of these sites are found to have potential land contamination issues, the Project Proponents appointed consultant should prepare and submit supplementary CAP(s) to EPD for approval prior to conducting any SI works. SI works should then be carried out according to the supplementary CAP(s). CAR(s) and, if contaminated soil and/or groundwater identified, RAP(s) should be prepared and submitted to EPD for approval.	All Sites Requiring Further Appraisal & Non-Contaminated Sites as listed in CAP / After the land is resumed and handed over to the Project Proponent and prior to commencement of any remediation / construction works.	Project Proponent / Contractor		√		EIAO-TM Guidance Note for Contaminated Land Assessment and Remediation (EPD, Revised in April 2023) Practice Guide for Investigation and Remediation of Contaminated Land (EPD, Revised in April 2023)
8.8.3.13 - 8.8.3.15	All DPs and Non-DPs	Sites not to be Developed In the event of a change to the Project plan wherein these sites will be developed, re-	All Sites not to be Developed as listed in CAP	Project Proponent / Contractor		√		Annex 19 of the EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Timing of	Implementation	_	ement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
		appraisal will be required to assess the potential land contamination status at such time that the site become accessible	/ After the land is resumed and handed over to the Project Proponent and prior to commencement of any remediation / construction works.					Guidance Note for Contaminated Land Assessment and Remediation (EPD, 2 Revised in April 2023) Practice Guide for Investigation and Remediation of Contaminated Land (EPD, Revised in April 2023) Guidance Manual for Use of Riskbased Remediation Goals for Contaminated Land Management (EPD, Revised in April 2023)
8.12.5.2	All DPs and Non-DPs	Further arsenic assessment should be carried out during site formation and during construction of foundation. The Government will treat the HAC soil in the shallow region before land allocation or land lease. The treatment depth will depend on the future land use in RODP. Subsequent Developer/Works Departments will treat HAC soil in deep regions for excavations required for basements, piles and utilities.	After the land is resumed and handed over to the Project Proponent and prior to commencement of any remediation / construction works.	Project Proponent / Contractor		✓		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of Agent		Implementation Stage*			Relevant Legislation & Guidelines • EIAO-TM • TPB PG-NO. 12C (Revised May 2014)
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
Ecological I	mpact (Terrestri	al and Aquatic)						ı
10.11.1.4	Non-DPs	Enhanced Wetland within the proposed SPS WCP The Government will develop the Sam Po Shue Wetland Conservation Park (SPS WCP) with a proposed area of approximately 338 ha to create environmental capacity for the development of San Tin Technopole. Among the 338 ha, while 10 ha is reserved for supporting facilities such as visitor center and other basic infrastructure, the Government will enhance the ecological function and capacity of 288 ha of wetlands and fisheries resources of 40 ha of fishponds by establishing the SPS WCP with active conservation management and modernised aquaculture to compensate for the loss in wetland habitats and fisheries resources arising from the development of San Tin Technopole and to achieve no-net-loss in ecological function and capacity of the wetlands concerned. Among the 288 ha, there will be 253 ha of "ecologically enhanced fishponds" compensating for pond habitat loss, and 35 ha of "enhanced freshwater wetland habitat" compensating for other freshwater wetland habitat loss. The Government aims to start the development of SPS WCP in around 2026/2027 for completion by 2039 or earlier to tie in with the full operation of San Tin Technopole. For the site formation works of the first batch of land at San Tin Technopole targeted for commencement in late 2024, no pond filling will be involved. On current planning, pond filling works will not start	Enhanced Wetland within the proposed SPS WCP / Construction and Operation Phase	Construction phase: AFCD as project proponent of SPS WCP; CEDD as works agent Operation phase: AFCD (within completed phases of SPS WCP handed over to AFCD only)				TPB PG-NO. 12C (Revised May)

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Imp	lementa Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		until 2026/27, and the pace of pond filling will tie in with the development progress of the SPS WCP. To this end, a working group will be formed between CEDD (as San Tin Technopole's works agent) and AFCD (as SPS WCP's sponsoring department) to coordinate the progress of pond filling and SPS WCP implementation. Enhancement measures in the form of improvement of tidal channel near Mai Po Nature Reserve and removal of exotic mangrove species in the Deep Bay area will also be implemented. Furthermore, interim wetland enhancement works would also be conducted at suitable ponds in the Inner Deep Bay area prior to the commencement of pond filling works. Both of these measures are further described below.						
10.11.3.3 - 10.11.3.4	Non-DPs	Enhanced Wetland for Pond Habitat Under the current wetland enhancement strategy, about 253 ha of enhanced wetland in the form of "ecologically enhanced fishponds" shall be established within the proposed SPS WCP. These ecologically enhanced fishponds would comprise existing pond habitats, and ponds that would be converted from existing brownfield or wasteland areas. These ponds shall be further enhanced with various features to increase the functional value and the carrying capacity to accommodate for higher abundance of wildlife. Enhancement measures could include: Increase in pond area and enhance connectivity;	Enhanced Wetland within the proposed SPS WCP / Construction and Operation Phase	Construction phase: AFCD as project proponent of SPS WCP; CEDD as works agent Operation phase: AFCD (within completed phases of SPS WCP handed over to AFCD only)		✓	✓	• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	Relevant Legislation & Guidelines
		 Physical modification of pond habitats to increase environmental carrying capacity; Managing and sequencing pond drain down across multiple ponds in the dry season to maximize feeding opportunities for avifauna and other wildlife; Providing fencing/controlling access to reduce disturbance from human activities and also prevent disturbance and predation of wildlife by feral dogs; Removal of existing bird scaring devices at actively managed ponds, where appropriate Stocking ponds with suitable prey items (i.e., trash fish) for target wildlife species (may be considered as an enhancement measure to achieve higher enhancement value). 						
10.11.3.6	Non-DPs	Physical Modification of Pond Habitats Across the entire ecologically enhanced fishpond areas, ponds could be physically modified to enhance ecological function and capacity. Typical measures to be implemented could be based on successful examples in Hong Kong such as the LMC EEA, including: Consolidating smaller, fragmented ponds into larger waterbodies that support higher densities of avifauna and attract larger, more disturbance sensitive species; Reprofiling pond banks to make the edges more gently sloping and shallower, increasing the available foraging area for avifauna;	Enhanced Wetland within the proposed SPS WCP / Construction and Operation Phase	Construction phase: AFCD as project proponent of SPS WCP; CEDD as works agent Operation phase: AFCD (within completed phases of SPS WCP handed over to AFCD only)		√	✓	-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*		Stage* Relevant Legi		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O		
		 Creating habitat islands that provide refuge for avifauna and other wildlife; and Floating platforms / wetlands will be placed in each pond to provide additional foraging areas for wetland avifauna and potential breeding sites for other species. 							
10.11.3.7 - 10.11.3.9	Non-DPs	Pond Drain-down and Water Management To help enhance the functional value of fishpond habitats, the total number of ponds drained down at any one time can be increased over and above levels currently implemented under the current Management Agreement (MA) practice. Under current MA practice, a relatively small number of ponds across the SPS WCP are drained down at any one time. Furthermore, most ponds participating in the programme are only partially drained for a period of 7 days. Feeding opportunities for avifauna could be enhanced by making the following changes to drain-down practices: The total area of fishponds drain-down at any one time could be increased; Full drain-down will be implemented rather than partial draining; and Similar to recommendations in the approved EIA report for Proposed Development at Fung Lok Wai, Yuen Long (Mutual Luck Investment Limited, 2008), drain-down periods will be extended to longer than typical commercial practices or drain-downs under current practices.	Enhanced Wetland within the proposed SPS WCP / Construction and Operation Phase	AFCD (within completed phases of SPS WCP handed over to AFCD only)		✓	✓		

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Imp	lementa Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		Extending the length of drain down would allow for water levels to be lowered more gradually. Where ponds have been reprofiled to have a shallower gradient, this would result in progressively larger areas of shallow water/mud being exposed. Overall, this would provide a more stable, high-value feeding habitat for avifauna compared to ponds which are drained down more quickly. Fishpond water will primarily be supplied by direct rainfall that will be retained and re-circulated during drain-down periods. As with current practice in the area, supplemental water can be sourced from drainage channels that traverse the site as required. For controlling water levels in the ponds, adjustable sluices or similar water control devices can be provided to connect adjacent ponds, with ponds adjacent to retained drainage channels also having similar devices connecting the ponds to the drainage channels. The water control device levels can be adjusted to allow excess water to flow from pond to pond towards the drainage channels gravity during storm events to prevent overtopping.						
10.11.3.10 - 10.11.3.11	Non-DPs	Controlled Access and Feral Dog Control Public access to ecologically enhanced fishponds habitat area could be controlled to reduce disturbance from human activities. This could be achieved by potentially gating key access points along the Border Road, Tun Yu Road and San Tin	Enhanced Compensatory Wetland within the proposed SPS WCP / Construction and Operation Phase	AFCD (within completed phases of SPS WCP handed over to AFCD only)		√	√	-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		ation	Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
		Tsuen Road (where appropriate, subject to detailed design). Smaller gates can be provided to control vehicular access along fishpond bunds. Site access would be maintained and controlled during the construction and operation phases of the SPS WCP. Measures (such as trapping and neutering) would be adopted to minimize disturbance and predation of wildlife by feral dogs.						
10.11.3.12	Non-DPs	Removing Bird-scaring Devices The use of wire strung across ponds or other devices to discourage birds predating on fish stocks is still relatively common across the proposed SPS WCP area, particularly in the west close to MPNR. Removing these devices will add value to the ponds for wetland avifauna.	Enhanced Compensatory Wetland within the proposed SPS WCP / Construction and Operation Phase	AFCD (within completed phases of SPS WCP handed over to AFCD only)		√	✓	-
10.11.3.13 & 10.11.3.26	Non-DPs	Trash Fish Stocking Stocking shallow ponds with small fish provides a high-quality feeding resource for many species of bird and other fish-eating species and may be considered as an additional measure to achieve higher enhancement value). This measure will be derived as needed to further enhance the functional value of the ponds.	Enhanced Compensatory Wetland within the proposed SPS WCP / Construction and Operation Phase	AFCD (within completed phases of SPS WCP handed over to AFCD only)		✓	√	-
10.11.3.28 - 10.11.3.34	Non-DPs	Enhanced Wetland for Other Freshwater Wetland Habitats Under the current wetland enhancement strategy, about 35 ha of "enhanced freshwater wetland habitats" shall also be established within the	Enhanced Wetland within the proposed SPS WCP / Construction and Operation Phase	Construction phase: AFCD as project proponent of SPS WCP; CEDD as works agent		√	✓	• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		proposed SPS WCP, alongside the compensation of "ecologically enhanced fishponds". The "enhanced freshwater wetland habitats" would be designed to compensate for impacts on a like-for-like basis as far as practicable, and could include various habitat types that would support communities currently utilising impacted freshwater habitats: Ducks and Grebes; Freshwater Wetland Avifauna; Other Wetland-associated Avifauna Species; Eurasian Otters; and Other Non-Avifaunal Species of Conservation Interest Details on the habitat requirement of these species are provided in Section 10 of the EIA report, and in the subsequent HCMP. Details on the habitat requirement of these species are provided in Section 10 of the EIA report, and in the subsequent HCMP. Disturbance impact from the Project is anticipated to result in EZ and RDZ along the Project boundary, which is expected to support lower densities of disturbance sensitive of wildlife, in particular avifauna species. As the species recorded in marsh / reed habitats tend to be less disturbance-sensitive than species utilizing more open wetland habitats, the proposed "enhanced freshwater wetland habitats" could be considered along these EZ and RDZ, where the remaining areas of the proposed SPS WCP (outside the EZ and RDZ) can be maximised for ecologically enhanced fishponds.		Operation phase: AFCD (within completed phases of SPS WCP handed over to AFCD only)				

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		•			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	Relevant Legislation & Guidelines		
		Upon the establishment of the proposed SPS WCP, it could be able to accommodate the aforementioned enhanced wetland of about 288 ha (253 ha of "ecologically enhanced fishponds" and 35 ha of "enhanced freshwater wetland habitats"). The Government will enhance the ecological function and capacity of 288 ha of wetlands in the proposed SPS WCP with active conservation management to compensate for the loss in wetland arising from the development of San Tin Technopole, which would create sufficient environmental capacity to support the compensation requirement of the Project.								
10.11.3.35	Non-DPs	Habitat Creation and Management Plan (HCMP) Details of the "ecologically enhanced fishponds" and "enhanced freshwater wetland habitat", including detailed design of habitats, habitat requirement for the aforementioned target species, details of management practices, implementation details, as well as the monitoring requirements (e.g., monitoring period, location, frequency, parameters, and target levels), will be provided in the subsequent HCMP. The HCMP should be submitted for approval from relevant Government departments (including AFCD and EPD), at least three months before the commencement of pond filling works.	Enhanced Wetland within the proposed SPS WCP / Design Phase	Design phase: Project Proponent, in consultation with AFCD (as project proponent) and CEDD (as works agent) of SPS WCP	√			-		
10.11.3.36	Non-DPs	Minimising Construction Phase Indirect Impacts on Sites of Conservation Importance and Associated Habitats	Project site / Design and Construction Phase	Project Proponent / Design stage consultant / Contractor	√	√		-		

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	Implementation Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	C	O	Relevant Legislation & Guidelines
		Phasing of pond filling works in San Tin – Sam Po Shue area should be adopted. The pond filling works will be phased to tie in with the phased development of the SPS WCP, with a working group formed to coordinate the progress of pond filling and SPS WCP implementation. The pond filling works should also be started from urbanised area towards the wider wetland area (i.e. from the southeast near STEMDC or San Tin Highway towards the northwest) and construction activities should be minimised at any one time, so as to allows gradual migration of wildlife to the wetland habitats northwest to the Project area. Pond filling works should also be conducted in wet season as far as possible when there is a lower abundance of avifauna. In order to reduce the scale of disturbance and the total area of pond filling at the same time, filling of ponds in San Tin / Sam Po Shue should be conducted in multiple wet seasons (at least 2 years or more).						
10.11.3.37	Non-DPs	Minimising Construction Phase Indirect Impacts on Sites of Conservation Importance and Associated Habitats Site hoarding of about 3 m high should be erected along the works site and works area before commencement of construction activities, to shield the avifauna in the nearby wetlands from the disturbance of human activities during construction phase. Such hoarding would be nontransparent and superimposing dark patterns or stripes to avoid the risk of potential bird collision.	Project site / Construction Phase	Contractor		✓		-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	-	ementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
10.11.3.38	Non-DPs	Minimising Construction Phase Indirect Impacts via the establishment of an "Eco-Interface" Under the Revised RODP, an "eco-interface" area with width of about 35 m was proposed along the northwest of the Project boundary, between the proposed Project area in San Tin and the wider pond habitats in San Tin and Sam Po Shue; while another "eco-interface" area with width of about 20 m was also proposed along the east of STEMDC, creating a buffer between the "OU(I&T)" land use and the watercourse STEMDC. The "eco-interface" would be established in the form of a landscape buffer via landscape planting, comprising native tree species, shrub mix and riparian vegetation, and incorporating a gentle slope interface, with an aim to minimise disturbance from Project area by providing a buffer between the development and the adjacent wetland habitats and associated fauna.	Project site / Design and Construction Phase	Design stage consultant / Contractor	✓	1		
10.11.3.39 - 10.11.3.41	Non-DPs	Wetland Enhancement Measure Together with the development of the Project, enhancement measures would also be implemented to enhance the ecological value of wetland habitats in the Deep Bay area. Two management issues at Mai Po Inner Deep Bay Ramsar Site could be addressed to enhance environmental capacity across the broader North West New Territories (NWNT) wetland system: Firstly, tidal channels that link gei wai in the Mai Po Nature Reserve to the Inner Deep Bay have become silted up over time, limiting	Off-site enhancement area / Construction and Operation Phase	Project Proponent / Contractor	1	1	✓	

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		tidal exchange and degrading the function of habitats within the gei wai. Improvement of these channels via de-silting can promote tidal exchange and enhance habitat condition within the gei wai. Secondly, the invasive exotic mangrove Sonneratia sp. has spread rapidly across mudflat habitats and drainage channels across the NWNT. Selective clearance of larger Sonneratia stands can help restore wetland habitats in affected areas. Realising the beneficial effects brought by the enhancement measures, they are targeted to be commenced as early as possible. Both enhancement measures shall be undertaken in the wet season (April – September) to minimise disturbance impacts to overwintering avifauna and hence they are proposed to be commenced earliest at the start of the 2025 wet season. Details of the enhancement measures (e.g. details, timeframe and requirement/frequency of repetition for the enhancement works) shall be provided in a separate work plan prepared by the project proponent, and submitted to AFCD for agreement at least three months prior to the commencement of these works.						
10.11.3.42 - 10.11.3.44	Non-DPs	Improvement of Tidal Channel Selected tidal channels could be de-silted. These channels connect to the sluice-gates of several existing <i>gei wai</i> , where proposed de-silting works could potentially enhance the functioning of <i>gei</i>	Off-site enhancement area / Construction and Operation Phase	Project Proponent / Contractor	√	✓	✓	-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	Implementation Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		wai. De-silting works would be undertaken in the wet season (April – September) by phases to minimise disturbance impacts to overwintering avifauna.						
10.11.3.45 - 10.11.3.46	Non-DPs	Sonneratia Clearance Additional enhancement of the Deep Bay area will be provided by the removal of exotic mangrove species on mudflat (Sonneratia spp.). The removal of exotic mangrove species would be undertaken in the wet season (April – September) selectively to minimise disturbance impacts to overwintering avifauna.	Off-site enhancement area / Construction and Operation Phase	Project Proponent / Contractor	✓	✓	√	-
10.11.3.47	Non-DP	Interim Wetland Enhancement Interim wetland enhancement measures prior to the commencement of pond filling works would also be implemented. Suitable ponds in the Inner Deep Bay area will be identified for implementing interim enhancement works, which may comprise restoration of abandoned ponds and arrangement of active management including fish stocking for suitable ponds. Details of the suitable ponds and interim enhancement works shall be provided in a separate Interim Wetland Enhancement Plan and submitted for approval from relevant Government departments (including AFCD and EPD) at least three months before the commencement of these interim enhancement works.	Off-site interim wetland enhancement area / Construction Phase	Project Proponent / Contractor	J	✓		-
10.11.2.2, and	DP7 of EIA Report, Non- DPs	Impact on Egretries: Mai Po Lung Village (MPLV) Egretry	Construction sites in the vicinity of the egretries /	Project Proponent / Design stage	1	√		Guidelines for Planning and Carrying out

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lementa Stage*		Relevant Legislation & Guidelines Construction Works at Egretries
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
10.11.4.3 - 10.11.4.4		The Revised RODP of the Project was carefully designed with the aim to preserve the MPLV Egretry, and the vegetation currently used by the breeding ardeids. An "Open Space" is currently proposed to preserve the core area of the egretry and the vegetation. Detailed design of this "Open Space" shall incorporate enhancement features, which may include: • Preservation of trees currently within the core area of the MPLV Egretry; • Incorporation of water features within the "Open Space" area, adjacent to the existing of MPLV Egretry; • Planting of mature trees adjacent to the water features, with native species that are currently used as egretry substratum; and • Maintaining a buffer area between the water features and the established mature trees from the adjacent proposed land-uses (e.g. logistics storage and workshop, district cooling system, and traffic roads). The enhancement measures would be established during the construction phase. Buffer planting along the Open Space could also minimise potential indirect disturbance impacts on the egretry from adjacent proposed land-use and traffic network during operation phase. Under the proposed "Open Space", only low intensity activities would be allowed (e.g. plant nursery), while other recreational activities (e.g. sports and recreation) would not be included in the "Open	Design and Construction Phase	consultant / Contractor				

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	C	0	& Guidelines
		Space" in order to minimise the disturbance to the MPLV Egretry. A pre-construction surveys are necessary to confirm the latest boundary and condition MPLV Egretry before commencement of the construction works. Any construction activities within the 100 m distance of the egretry (subject to findings of pre-construction survey) should be subject to seasonal control. An Egretry Habitat Enhancement and Management Plan including the details of design plan, site preparation works, works schedule and management plan should be prepared for approval from relevant Government departments (including EPD and AFCD) before the commencement of construction works. Maintenance of enhancement features suggested above (e.g. preservation and planting of egretry substratum, incorporation of water features, and maintaining buffer area) shall be implemented during the period of egretry monitoring.						
10.11.4.10 - 10.11.4.12	DP1, DP7 of EIA Report, Non-DPs	Minimising Construction Phase Impacts on Egretries Considering the close proximity between the proposed development and both MPLV Egretry and MPV Egretry, encroachment into the trees at both egretries shall be strictly avoided during construction phase (except for the minor encroachment of the MPLV egretry). The latest boundary, condition, flight paths of both MPLV Egretry and MPV Egretry and the associated	Construction sites in the vicinity of the egretries / Design and Construction Phase	Design stage consultant / Contractor	√	✓		Guidelines for Planning and Carrying out Construction Works at Egretries

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Sta	Implementation Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidennes
		mitigation measures should be confirmed by preconstruction surveys before commencement of the construction works. Potential disturbance impact on the breeding ardeids shall be further minimised by establishing a buffer area of 100 m from the footprint of both egretries. In addition, the boundary of the 100 m buffer area should be updated subject to the findings of pre-construction survey. Stringent seasonal control would be implemented within the buffer area, where construction activities shall be avoided during the ardeid breeding period (i.e. from March to early September). Construction activities shall be conducted from late September to February in the following year, unless AFCD's prior approval on construction method has been obtained and appropriate mitigation measures have been proposed and adopted. Tree crown pruning works at the egretries shall be avoided as best as possible, and where necessary, shall also be conducted and completed outside the ardeid breeding season to minimise disturbance to any breeding ardeids that may be present. Method Statement on construction activities near the egretries and necessary tree crown pruning works shall be submitted to AFCD in advance of the works. Other stringent control measures shall also be implemented (e.g. establishment of hoarding and regular auditing). Aside from the construction activities, any associated temporary works areas (e.g. site office, stockpiling / material storage						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent		lementa Stage*	ntion	Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	a duidennes
		area, etc.) shall be strictly restricted outside the egretries as well. Potential pruning works shall only be conducted where necessary, limited at overgrown tree branches that may affect construction activities.						
10.11.5.3 - 10.11.5.5	Non-DPs	Re-provision of Roosting Substratum for Ha Wan Tsuen Night Roost A re-provision of roosting area which comprises water features and riparian vegetation shall be provided before the removal of Ha Wa Tsuen Night Roost, adjacent to the proposed fisheries research centre under the Revised RODP. The reprovided roosting area would comprise mature individuals of native tree species that are currently used as a roosting substratum. The incorporation of these features (water features and associated roosting trees) shall be completed before dry season (October to March), prior to the arrival of the overwintering birds, in order to provide suitable roosting opportunities. A preconstruction survey is necessary to confirm the latest boundary and condition of the night roosts before commencement of the construction works. Prior to the tree removal at the existing Ha Wan Tsuen Night Roost, noisy construction activities within 100 m of the existing Ha Wan Tsuen Night Roost would be subject to timing control during dry season (October to March) to minimise indirect disturbance impacts; while upon the tree removal at Ha Wan Tsuen Night Roost (and the re-provision of roosting substratum at the	Construction sites, existing night roosts, and re-provision roosting area / Design and Construction Phase	Project Proponent / Design stage consultant / Contractor	✓			

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		Implementation Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	Des C C	O	& Guidelines
		Fisheries Research Centre), the same timing control would be implemented within 100 m of the reprovided night roost. During dry season (October to March), noisy construction activities (with the use of PME) within the 100 m buffer area should cease at least an hour before sunset, and shall commence at least an hour after sunrise on the following day, making reference to the time of sunrise and sunset from the Hong Kong Observatory.						
10.11.5.6 - 10.11.5.7	DP6, DP7 of EIA Report	Re-provision of Roosting Substratum for San Tin Open Storage Area Night Roost Roosting opportunity shall be provided at the "Open Space" along the bank of the diverted and revitalised WC-N8 (STWMDC), approximately 110 m east of the original night roost. The reinstated roosting area should instead include mature native tree species recorded in other night roost, including but not limited to mature Ficus spp. The re-provision of roosting area should be completed before dry season (October to March), prior to the arrival of the overwintering birds, in order to provide suitable roosting opportunities. A pre-construction survey is necessary to confirm the latest boundary and condition of the night roosts before commencement of the construction works. Furthermore, construction activities within 100 m of the reprovided night roosts of San Tin Open Storage Area Night Roost shall be subject to timing control during dry season (October to	Construction sites, existing night roosts, and re-provision roosting area / Design and Construction Phase	Project Proponent / Design stage consultant / Contractor	✓ ·	✓		

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		March) to minimise indirect impacts. Prior to the tree removal at the existing roosting site, noisy construction activities within 100 m of the existing San Tin Open Storage Area Night Roost would be subject to timing control during dry season (October to March) to minimise indirect disturbance impacts; while upon the tree removal (and the re-provision of roosting substratum along the revitalised STWMDC), the same timing control would be implemented within 100 m of the re-provided night roost. During dry season (October to March), noisy construction activities (with the use of PME) within the 100 m Buffer Area should cease at least an hour before sunset, and shall commence at least an hour after sunrise on the following day, making reference to the time of sunrise and sunset from the Hong Kong Observatory. Monitoring of the re-provided roosting sites (e.g. conditions of the re-provided tree individuals) shall also be conducted, with maintenance conducted by the Project Proponent and Contractor during the period of night roost monitoring.						
10.11.5.1 - 10.11.5.8		Minimising Construction Phase Direct / Indirect Impacts on Night Roost The construction activities and tree felling in Ha Wan Tsuen Night Roost and San Tin Open Storage Area Night Roost should be allowed only in wet season (April – September) which no roosting individual was recorded in current survey. Re- provision planting of the roosting substratum both	Construction sites, existing night roosts, and re-provision roosting area / Construction Phase	Design stage consultant / Contractor	√	✓		_

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	Des C	O	a dulucinies
		night roosts should also be commenced as early as possible before the commencement of construction activities that may result in the loss of both night roosts. In the case where construction activities or temporary works cannot be avoided during the overwintering season, As discussed above, in the case where construction activities or temporary works near the re-provided night roosts cannot be avoided during the overwintering season (October to March), noisy construction works within 100 m of the existing night roosts (prior to tree felling) and re-provided night roosts (upon re-provision) (exact area would be subject to the preconstruction survey finding and detailed design in the future) should cease before the peak returning time (an hour before sunset) of the ardeids and Great Cormorants, and shall commence at least an hour after sunrise on the following day, making reference to the time of sunrise and sunset from the Hong Kong Observatory. Monitoring of the re-provided roosting sites (e.g. conditions of the re-provided tree individuals) shall also be conducted, with maintenance conducted by the Project Proponent and Contractor during the period of night roost monitoring.						
10.11.6.1 - 10.11.6.3	Non-DPs	Impact on Flight Paths: MPLV Egretry A Non-Building Area (NBA) of about 70 m wide is proposed to the northwest from the existing MPLV	Construction sites / Design and Construction Phase	Design stage consultant / Contractor	√	√		-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	a datacinics
		Egretry. Under the Project, obstruction of flight paths will also be further minimised by maintaining flight corridors along the proposed Road D3, allowing connection of flights between the MPLV and the diverted WC-N8 located towards the northeast, and along the proposed Road L11 towards the west. No tall structures are anticipated above the proposed Road D3 and Road L11, thus expected to allow flight to and from the MPLV Egretry, partially coinciding with the observed Flight Paths. Heights of associated structures on these corridors shall be limited in order to allow flight movement. In order to minimize the disturbance on the flight path along the NBA during breeding period of the egretry (i.e. from March to early September) and encourage ardeid usage, the noisy construction works (with the use of PME) within the 70 m wide NBA should cease at least an hour before sunset, and shall commence at least two hours after sunrise on the following day, making reference to the time of sunrise and sunset from HKO), to avoid the period of highest utilisation of flight path. Further disturbances shall be minimised along the proposed flight paths, by incorporation of greening features of suitable heights, where appropriate, to minimise visual disturbance on the ardeids from human activities and further encourage flight usage.						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*		Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	Relevant Legislation & Guidelines	
10.11.6.4 - 10.11.6.5	Non-DPs	Impact on Flight Paths: MPV Egretry The proposed "eco-interface" with provision of greening and wetland habitats is overlapped with certain flight paths from MPV Egretry, thus promoting the connectivity and movement corridor of the MPV Egretry and the wider wetland habitats.	Construction sites / Design and Construction Phase	Design stage consultant / Contractor	√	√		-	
10.11.6.6 - 10.11.6.9	Non-DPs	Maintaining Flight Corridor Across LMC BCP The Project would incorporate a flight corridor with width of about 300m. This flight corridor would comprise the proposed AFCD Fisheries Research Centre (near the Loop), a few GIC sites (reserved for a pumping station, HKPF Weigh Station and Customs dog base) and a proposed NBA within I&T sites near STEMDC to preserve a corridor for flight movement between the east and the west. Minimal building structures with small area are anticipated at the AFCD Fisheries Research Centre and the GIC sites, with building height of not more than 15 mPD. No aboveground building structures would be established above the STEMDC and the NBA. Noisy construction works (with the use of PME) within the 300 m wide flight corridor should cease at least an hour before sunset, and shall commence at least two hours after sunrise on the following day (making reference to the time of sunrise and sunset from HKO) during dry season (October to March) to avoid the period of highest utilisation of the flight corridor.	Construction sites / Design and Construction Phase	Design stage consultant / Contractor	✓	✓			

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	G Galasimos
		To further promote flight movement, stepping height of the building structures adjacent to the flight corridor would also be implemented, with building height of not more than +35mPD proposed on both north and south sides of the flight corridor to encourage usage of this corridor and minimise potential obstruction impact.						
10.11.8.2 - 10.11.8.4	Non-DPs	Woodland Compensation Compensatory planting would be performed for the loss of the 1.64 ha woodland of "moderate value" at an off-site woodland compensation site. A suitable area was identified near the compensatory woodland for the Lok Ma Chau Loop Project. Native species of different growth form with high market availability are preferred for compensatory planting. Compensatory planting would be provided sequentially upon he completion of works within the Project area. To facilitate successful establishment of the compensatory woodland, a detailed Woodland Compensation Plan should be prepared by local ecologists / botanist with at least 5 years of relevant experience. The plan should include implementation details, management requirement and monitoring requirements (e.g., methodology, schedule, frequency of monitoring, and monitoring parameters), and should be submitted to relevant Government departments (including AFCD and EPD) for approval at least two months before commencement of the planting.	Off-site woodland compensation area / Design, Construction and Operation Phase	Project Proponent / Design stage consultant / Contractor & Qualified Botanist / Ecologist	✓	✓		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	ementa Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	a dulacinics
10.11.8.2 – 10.11.8.4; EM&A Manual 9.3.6	Non-DPs	Upon the completion of planting, monitoring and maintenance works (e.g., irrigation, weeding, pruning, control of pests and diseases, replacement planting and repair of damage) of the compensatory woodland should be implemented. Upon the completion of compensatory planting, a three-year monitoring by local ecologist / botanist with at least 5 years relevant experience is recommended to ensure proper establishment of this compensatory woodland. The monitoring frequency should be monthly within the first year upon the establishment of the compensatory planting, and bi-monthly in the next two years of the monitoring.	Off-site woodland compensation area / Construction and Operation Phase	Project Proponent / Contractor & Qualified Botanist / Ecologist		V	✓	-
10.11.9.1 - 10.11.9.3	Non-DPs	Avoiding Direct Loss of Species of Conservation Importance A few individuals of the flora species of conservation importance were recorded at areas which would be zoned as 'Green Belt' (GB) land use under the Revised RODP. As habitat and vegetation would be preserved at these GB zones, direct impact to the Incense Trees would be avoided. Direct impact on other flora and fauna species of conservation importance shall be further avoided / minimised by mitigation measures such as pre-construction surveys and transplantation / translocation / nest control measure of the species.	Construction sites / Design and Construction Phase	Design stage consultant / Contractor & Qualified Ecologist	√	√		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	lementa Stage*		Relevant Legislation & Guidelines • EIAO-TM
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
10.11.9.4 - 10.11.9.5	Non-DPs	Flora Species of Conservation Importance Transplantation is recommended as far as possible for Cycadfern and Incense Tree to minimise the direct impact to this species. Prior to the commencement of the construction phase, a detailed vegetation survey would be conducted by a qualified botanist / ecologist to confirm the locations and health condition of Cycad-fern and Incense Tree. All the healthy individuals suitable for transplantation would be identified and rescued. They would be transplanted to suitable receptor site outside Project area, ideally at wooded habitats such as mixed woodland, plantation, shrubland or woodland outside the Project area. Pre-construction survey, screening / selection of receptor site(s) and preparation of a Protection and Transplantation Proposal describing details of the transplantation methodologies would be prepared by qualified botanist / ecologist and submitted for approval prior to transplantation. Mitigation for Luofushan Joint-fir is recommended in compensation manner. Seedling planting of Luofushan Jointfir is recommended in receptor site(s). However, it should be planted in low density to reduce its shading stress to the receptor site(s) in future. Pre-construction survey, collection of seeds, screening / selection of receptor site(s) and preparation of a Protection and Seedling Planting Proposal should be prepared by qualified botanist / ecologist for approval.	Construction sites / Design and Construction Phase	Project Proponent / Design stage consultant / Contractor & Qualified Botanist / Ecologist	✓			• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		lementa Stage*		Relevant Legislation & Guidelines - EIAO-TM
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
10.11.9.4 – 10.11.9.5; EM&A Manual 9.3.7	Non-DPs	Upon the transplantation / seedling planting of the identified individuals, a three-year post-transplantation / post-seedling planting monitoring should be implemented to monitor the health conditions and survival of the transplanted individuals. The suggested monitoring frequency should be monthly within the first year upon the establishment of the transplantation, and bimonthly in the next two years of the monitoring.	Receptor site of flora species of conservation importance (e.g., off- site woodland compensation area) / Construction and Operation Phase	Project Proponent / Contractor & Qualified Botanist / Ecologist		√	√	-
10.11.9.6 - 10.11.9.12	Non-DPs	Fauna Species of Conservation Importance Breeding Ground of Avifauna Species of Conservation Importance In order to avoid direct injury to the breeding pairs, chicks and eggs, nest control measures should be implemented in nonbreeding season (late August to early February) to discourage breeding behaviour within Project area prior to construction works. To avoid nesting of Little Ringed Plover in drained ponds, drained ponds should be covered by black pond liner immediately to discourage Little Ringed Plover from nesting on the drained ponds. To discourage nesting of White-shouldered Starling, box attached to electric pole should be sealed / removed in non-breeding season. To discourage nesting of White-throated Kingfisher, the mud wall and mud wall tunnels within Project area on Ngau Tam Shan should be sealed in non-breeding season. Prior to nest control measures, the drained pond, box and mud wall tunnel should be checked carefully by qualified ecologists to ensure	Construction sites / Design and Construction Phase	Project Proponent / Design stage consultant / Contractor & Qualified Ecologist	✓	✓ ·		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidennes
		no avifauna / eggs are present. Preparation of Nest Control Proposal, pre-construction survey and the nest control measures mentioned should be conducted by qualified ecologist with at least 10 years relevant experience to ensure the control measures and the subsequent works would not injure any breeding pairs, chicks or eggs. Freshwater Fauna Species of Conservation Importance Pre-construction survey would be conducted for Rose Bitterling, followed with measures to capture and translocate them to suitable habitat(s) nearby, which are free from development pressure. Qualified ecologist with freshwater fauna experience with at least 5 years relevant experience should prepare a detailed Translocation Proposal for approval. For example, considering the Rose Bitterling has a spawning symbiosis relationship with Chinese Pond Mussel, translocation of Chinese Pond Mussel should also be included in the scope of translocation; while mud should also be deposited to support the mussel, etc. The potential receptor sites should be in similar size compared to the original fishponds (approximately 0.42 ha / pond). The abiotic (temperature, pH, salinity, level of dissolved oxygen, turbidity and pollution) and ecological (vegetation, presence of invasive fish / predators) parameters of receptor site(s) should be examined prior to translocation. Screening and selection of potential receptor sites would be						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		included in the Translocation Proposal, conducted by qualified ecologist before the commencement of construction phase. Capture and translocation are recommended two freshwater crab species of conservation importance (Cryptopotamon anacoluthon and Somanniathelphusa zanklon). Preconstruction survey focusing the locations where they were previously recorded in Project area should be conducted, identified individuals should be captured and translocate to suitable receptor sites. Preparation of Translocation Proposal, screening / selection of receptor sites and capture – release process should be conducted by qualified ecologist with relevant experience. Herpetofauna Fauna Species of Conservation Importance Translocation is suggested for amphibian species of conservation importance. Similar capture – release approach would also be adopted for amphibians. Both adults and tadpole shall be included in the scope of translocation. The preconstruction survey, capture and release should be conducted during night-time in wet season when amphibian is relatively active to maximise capture rate. Preparation of Translocation Proposal, screening / selection of receptor sites and capture – release process should be conducted by qualified ecologist with relevant experience.						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	•	lementa Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
10.11.9.9 – 10.11.9.13; EM&A Manual 9.3.8	Non-DPs	Upon the translocation of the identified individuals, a three-year post-translocation monitoring should be implemented to investigate the survival of translocated individuals as best as possible. The suggested monitoring frequency should be monthly within the first year upon translocation, and bi-monthly in the next two years of the monitoring.	Receptor site of fauna species of conservation importance / Construction and Operation Phase	Project Proponent / Contractor & Qualified Ecologist		✓	1	-
10.11.9.4 - 10.11.9.12	Non-DPs	Post-transplantation, post-plantation and post-translocation monitoring programs for the mentioned flora / fauna species are required for determining the success of mitigation. Direct observation and counting, mark-recapture and active search would be potential methodology for the monitoring programs depend on the target species. Detailed methodology, schedule and frequency of monitoring program would be provided in the corresponding Transplantation / Translocation Proposal(s).	Construction sites / Construction and Operation Phase	Project Proponent / Design stage consultant / Contractor & Qualified Ecologist		1	✓	• EIAO-TM
10.11.9.15	Non-DPs	Eurasian Otter While no significant ecological impacts are anticipated on the low occurrence of Eurasian Otters, a conservative approach has been adopted, and their potential movement corridor across the Project area was considered under the Revised RODP with the inclusion of a wildlife corridor (detailed in Section 10). Further preconstruction site check will be included under a conservative approach on this highly elusive species.	Construction sites / Construction Phase	Contractor & Qualified Ecologist	√	✓		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Star		Implementation Stage*		•		•		•		· ·		•		·		Stage*			Relevant Legislation & Guidelines - Noise Control Ordinance (NCO) - Air Pollution Ordinance (Construction Dust) Regulation)
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines																
10.11.10.1	All DPs and Non-DPs	Minimising Direct Injury / Mortality of Wildlife Proper screening (e.g. hoarding or barrier) would be provided to restrict construction activities within the Project sites, to minimise potential direct injury to nearby wildlife by confining the construction activities, and to avoid the wildlife from accidentally entering the Project sites.	Construction sites / Construction Phase	Contractor		√		-																
10.11.12.1 - 10.11.12.2	All DPs and Non-DPs	Minimising Construction Disturbance to Habitats, Sites of Conservation Importance and Wildlife Mitigation measures should be implemented to minimise the disturbance impacts (e.g. noise, glare and dust) to the adjacent habitats and their associated wildlife arising from the construction activities, including but not limited to the following: Noise mitigation measures by effective placing of site hoarding, temporary noise barriers and material stockpiles where practicable as screening, shut down of machines and plants that are in intermittent use, and the use of quality power mechanical equipment (PME) to limit noise emissions at source. Machines and plant known to emit strong directional noise should, wherever practicable, be orientated so that the noise is directed away from the nearby habitats. QMP and other machines and plants should be covered by noise enclosure to further reduce noise impact; A balance between lighting for safety, and avoiding excessive lighting can be achieved	Construction sites / Construction Phase	Contractor		√		Ordinance (NCO) • Air Pollution Ordinance (Construction																

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines		
		through the use of directional lighting to avoid light spill into sensitive areas (e.g. construction activities near the egretries and ardeid night roosts), hoarding provision, and control night-time lighting periods, particularly for the works site(s) located in proximity, and during peak season of activities (e.g. breeding season of the egretries, peak roosting season of ardeids at night roosts during dry season), hence minimising the potential indirect impact on the community of the breeding and night-roosting ardeids; Dust suppression measures (such as regular spraying of haul roads, proper storage of construction materials, covering trucks or transporting waste in enclosed containers, and environmental control measures as stipulated in the Air Pollution Ordinance (Construction Dust) Regulation) to avoid and minimise emission and dispersal dust, which would cover vegetation and potentially discourage usage of nearby wildlife; and For construction activities at pond habitats within the Wetland Conservation Area, percussive piling works and demolition using excavator mounted breakers should be avoided from November to March. Where such construction activities are unavoidable, additional agreement with relevant Government departments (including EPD and AFCD) should be sought prior to the commencement of works.								

EIA Ref.	Relevance to Designated	Environmental Protection Measures	liming of	Implementation Agent	Implementation Stage*		ntion	Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
10.11.12.2	All DPs and Non-DPs	Good site practices should be strictly followed to avoid / minimise adverse impacts arising from the construction activities. Recommendations for good site practices during the construction phase include: Nomination of approved personnel, such as a site manager, to be responsible for implementation of good site practices, arrangements for waste collection and effective disposal to an appropriate facility; Training of site personnel in site cleanliness, concepts of waste reduction, reuse and recycling, proper waste management and chemical waste handling procedures; Provision of sufficient waste reception/ disposal points, and regular collection of waste; Adoption of appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; Provision of regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; Adoption of a recording system for the amount of wastes generated, recycled and disposed (including the disposal sites); and Preparation of Waste Management Plan (WMP), as part of the Environmental Management Plan (EMP).	Construction sites / Construction Phase	Contractor				WDO Public Cleansing and Prevention of Nuisances Regulation (Cap. 132BK)

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	& Guidelines
10.11.12.3	All DPs and Non-DPs	 Minimising Water Quality Impacts Good site practices during the construction phase should be adopted to avoid any pollution entering any nearby watercourses. Practices to minimise surface run-off and to reduce suspended solid levels should be undertaken during construction: Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins; Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms; General refuse and construction waste should be collected and disposed of in a timely and appropriate manner; Drainage arrangements should include sediment traps to collect and control construction run-off; Silt removal facilities, channels and manholes should be maintained, and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to prevent local flooding; All works and storage areas should be restricted to the site boundary; All vehicles and plant should be cleaned before they leave a construction site to minimise the deposition of earth, mud, debris on roads; and 	Construction sites / Construction Phase	Contractor				WPCO ProPECC PN 2/23 EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	lement Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	a duidennes
		Regular check of the construction boundary to avoid unmitigated impacts imposed on nearby watercourse.						
10.11.10.2	All DPs and Non-DPs	Minimising Bird Collision The potential bird collision should be avoided by using low reflective materials (e.g. tinted glass, low reflective window film) and appropriate architectural features on building structures c-transparent panels should also be used as noise enclosure, as well as adopting non-glaring tinted materials, or superimposing dark patterns at the majority of glazing along barriers to avoid and minimise bird mortality from collision.	Construction sites / Design, Construction and Operation Phase	Design stage consultant / Contractor / Operator	√	V	√	 Guidelines on Design of Noise Barriers Practice Notes No. BSTR/PN/003 (Revision E) Noise Barriers with Transparent Panels
10.11.12.1 - 10.11.12.2	Non-DPs	Wildlife Corridor Under the Revised RODP, wildlife corridors have been incorporated to provide opportunity for ecological linkage between STEMDC, Ha Wan Tsuen and Lok Ma Chau. This wildlife corridor should comprise underground sections (concrete underpasses across proposed roads) and aboveground sections which would be provided within the AFCD Fisheries Research Centre, to provide connection between the AFCD Fisheries Research Centre and the STEMDC. Indicative locations of these proposed wildlife corridors are presented in Figure 10.10A, which would provide opportunity for wildlife movement across the area, in particular the mammal species currently recorded, as well as potential usage of Eurasian Otters.	Construction sites / Design, Construction and Operation Phase	Project Proponent / Design stage consultant / Contractor	✓	1		-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Timing of	Implementation	Implementation Stage*		Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	0	Relevant Legislation & Guidelines		
		Revitalisation works would be conducted along the STEMDC to provide eco-friendly habitats for wildlife including target mammal species. Continuous fencing of suitable height for mammal barrier should be erected along the wildlife corridor in order to prevent roadkill and guiding wildlife into the underpasses. Wildlife corridors shall be considered to provide ecological linkage between the various "GB" under the Revised RODP, targeting mammal species of conservation importance recorded including East Asian Porcupine, Leopard Cat and Red Muntjac. Details of the proposed wildlife corridor shall be formulated in detailed design in later stages, and shall be agreed with relevant Government departments (including AFCD and EPD) prior to commencement of construction works. It is expected that, provision of wildlife corridor can maximise the ecological function of preserved "GB" and mitigate the habitat fragmentation impact. Potential usage of the wildlife corridor should also be recorded (e.g. with the use of camera traps). Maintenance work such as weeding, screening, and repairing broken fencing / structure should be conducted, where necessary, during the period of monitoring of the wildlife corridor conditions								
10.11.13.1	Non-DPs	Eco-Interface The "eco-interface" could provide opportunities for further enhancement measure to promote wildlife usage. Installation of artificial nest boxes	Construction sites / Design, Construction and Operation Phase	Design stage consultant / Contractor	√	✓				

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	, igent	Des	С	O	& Guidelines
		and bat boxes are recommended in "eco- interface" areas to attract avifauna and bat species including species of conservation importance such as Whiteshouldered Starling and Japanese Pipistrelle. Location and selection of nest box and bat box would be subject to detailed design.						
10.11.13.2	DP6, DP7 of EIA Report	River Revitalisation Major watercourse including WC-N3 and WC-3 (i.e. STEMDC) and WC-N8 (i.e. STWMDC) would be reinstated and revitalised, while details of the revitalisation would be available after detailed design. Opportunities for ecological enhancement (e.g. bioengineering, creating meanders) would be explored to improve its ecological value. Provision of natural substrate that would encourage colonisation of flora and freshwater fauna in the bottom and banks of the revitalised watercourses would be considered, subject to detailed design of the proposed revitalisation measures. Vegetation species to be planted along the riparian zone would be selected on the basis that it would benefit the wildlife recorded in the vicinity. Fauna species recorded from recent surveys and previous studies (e.g. foraging ground for avifauna species, drinking site for bat species) would be potentially benefit from the revitalised watercourse. Maintenance works (e.g. weeding, de-silting, replacement planting, repair of damage, etc.) should also be conducted as necessary.	Construction sites / Design, Construction and Operation Phase	Project Proponent / Design stage consultant / Contractor / DSD	✓	✓	√	

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	ementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
10.11.13.3	Non-DPs	Enhanced Connectivity at Green Belts With the inclusion of the proposed wildlife corridors, enhanced connectivity is anticipated between Green Belts to benefit wildlife usage. Other Green Belts were also retained under the Revised RODP. While some Green Belts on the southern portion of the Project area was not recorded with particular mammal species of conservation importance (e.g. GB.3.1 and GB.5.5), similar underpass structures are proposed to connect these Green Belts in order to provide enhanced connectivity for general wildlife (e.g. future urban wildlife within the Revised RODP). No specific ecological monitoring would be required for this enhancement feature.	Construction sites / Design, Construction and Operation Phase	Project Proponent / Design stage consultant / Contractor	✓	✓		-
10.11.13.4	All DPs and Non-DPs	Greening Opportunity Greening opportunities should be explored to promote the overall habitat quality and ecological connection. Native tree, shrub and herb species should be considered as far as possible, with consideration of market availability, for landscape planting and buffer planting in the Project area and Project boundary. Furthermore, native host plants and nectar plants should preferentially be considered in the planting plan to provide a butterfly-friendly environment. Beside planting host and nectar plant for attracting butterfly, Livistona chinensis could also be planted to create favourable roosting habitat for Short-nosed Fruit Bats recorded in the present study, and native fruits trees with food sources (e.g. Ficus	Construction sites / Design, Construction and Operation Phase	Design stage consultant / Contractor	✓	1		-

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		Stage* Relevant Leg	
	Project (DP)		Completion of Measures	Agent	Des	С	0	• Propect PN 2/23 • WDO • Waste Disposal (Chemical Waste) (General) Regulation
		microcarpa, F. subpisocarpa, F. variegata, Dimocarpus longan, Clausena lansium) be planted to attract birds. Buffer planting together with nectar plants and host plants is highly recommended especially in the south of Pang Loon Tei, close to CA in the hillside, where a high diversity of butterfly species was recorded.						
Fisheries Im	pact					J.		
11.7.1.1	DP1, DP6, DP7 of EIA Report, Non- DPs	Maintaining Bund Stability During the construction stage, all ponds to be removed (including ponds partially encroached by the Project boundary) shall be isolated and not connected to any existing watercourse. The pond would then be drained before filling up these areas or before commencement of any excavation and construction works. To maintain bund stability of remaining adjacent ponds, a layer of shoring or sheet pile wall should be erected along the site boundary adjacent to fishponds. In addition, the shoring / sheet pile wall should have grouting or a grout curtain to avoid water seepage from the fishpond to the excavation area.	Construction sites / Construction Phase	Contractor		√		-
11.7.1.2 - 11.7.1.3	DP1, DP6, DP7 of EIA Report, Non- DPs	Minimisation of Potential Water Quality Impacts Mitigation measures and good site practices should be implemented during the construction phase, as proposed in Section 5 (e.g. proper covering of construction debris and stockpiling of material to avoid runoff into the ponds), to further minimise potential water quality impact on the ponds adjacent to the Project boundary. Surface	Construction sites / Construction Phase	Contractor		1		 WDO Waste Disposal (Chemical Waste) (General)

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	
		drainage system shall also be provided to collect road run-off during the operation phase of the Project. Examples of mitigation measures for potential water quality impact include: Control of Site Run-of Implementation of Best Management Practices (BMPs), following the guidelines for handling and disposal of construction site discharges detailed in ProPECC PN 2/23 "Construction Site Drainage"; Controlling surface run-off from construction site into storm drains via adequately designed channels, earth bunds or sand bag barriers, directing the runoff to sand / silt removal facilities such as sand traps, silt traps and sedimentation basins; Minimising soil excavation in wet season (April to September), or where impracticable, proper covering of temporarily exposed slope surfaces, while intercepting channels should be provided along the crest / edge of excavation; Proper covering of open stockpiles of construction materials during rainstorms (e.g. with tarpaulin or similar fabric). Control of Other Construction-Related Activities All vehicles and plants should be cleaned before they leave the construction site to minimise the deposition of earth, mud and debris in surrounding areas; Acidic wastewater generated from acid cleaning, etching, pickling and similar						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		activities should be neutralised to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralised wastewater should be tankered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters; • The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes. The Contractor is also recommended to develop management procedures for chemicals used and prepare an emergency spillage handling procedure to deal with chemical spillage in case of accidents.						
11.7.2.3 - 11.7.2.4	Non-DPs	Fisheries Compensation Requirement and Location The requirement of fisheries compensation mainly arises from the direct permanent loss of active fishponds (which support existing aquaculture activities and production), and the permanent loss of inactive fishponds (with potential value to support future aquaculture activities upon conversion). The Government will introduce a suite of mitigation measures to enhance the fisheries resources (e.g. fisheries activities and production, culture area and aquaculture potential etc.) of the proposed SPS WCP with a view to compensate for the loss of fishponds arising from	Fisheries compensation area within the proposed SPS WCP / Construction and Operation Phase	Construction phase: AFCD as project proponent of SPS WCP; CEDD as works agent Operation phase: AFCD		<i>J</i>	<i>J</i>	• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	lementa Stage*	ation	Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		the development of the San Tin Technopole as well as making an overall improvement to the utilisation of fisheries resources for aquaculture and promoting sustainable development of the industry in the long run. The Government will enhance the fisheries resources of 40 ha of land in the SPS WCP, including incorporation of modernised aquaculture, to compensate for the loss in fisheries resources arising from the development of San Tin Technopole. The Government will reserve 40 ha of land in the proposed SPS WCP as a fisheries enhancement area, in which the fisheries resources will be enhanced by incorporation of modernised aquaculture and proper planning and management of aquaculture activities therein. The fisheries enhancement area shall be delineated separately from the "ecologically enhanced fishponds", of which the purpose would conflict with aquaculture activities for food fish production since the "ecologically enhanced fishponds" mainly serve to provide ecological enhancement and attract foraging birds and other wildlife.						
11.7.2.10 - 11.7.2.11	Non-DPs	Establishing the AFCD Fisheries Research Centre Proper technical support would ensure the proper implementation of these practices to enhance actual fisheries aquaculture production. As such, under the Project, an AFCD Fisheries Research Centre shall be established at a location near the Loop to bridge the technical gap by providing	OU(I&T)6 site in the northern portion of the Project area, southwest to the Loop / Construction and Operation Phase	Construction phase: AFCD as project proponent of Fisheries Research Centre; CEDD as works agent		√	√	

Relevar EIA Ref. Design		Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*		Stage*	Stage* Relevant Leg		Relevant Legislation
Project	(DP)		Completion of Measures	Agent	Des	С	O	Relevant Legislation & Guidelines		
		support to the modernised aquaculture that is currently practised only in a limit extent in Hong Kong. Details of layout and design are subject to AFCD's approval on the site requirement in the design and construction stage. The proposed AFCD Fisheries Research Centre shall be implemented with accorded priority under the initial phase of the Project, for it is indispensable in serving a vital role in the provision of mitigation measures by promoting modernised aquaculture, conducting aquaculture research, and transferring modernised aquaculture techniques to local fish farms, thus facilitating the transformation and upgrading of the industry through technological advancement and improving aquaculture activities in the area. Furthermore, the proposed AFCD Fisheries Research Centre would be implemented under the initial phase of the Project, while the majority of the fishpond loss in San Tin and Sam Po Shue would occur during the main phase of the Project (refer to Appendix 2.1 for development phasing plan). With the early establishment of the Fisheries Research Centre, early enhancement of aquaculture production and activities would be possible, thus minimising fisheries impact before the establishment of fisheries enhancement area in the proposed SPS WCP.		Operation phase: AFCD						

Impact on Cultural Heritage

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		ement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
12.5.4.1	DP2 of EIA Report, Non- DPs	Cartographic and Photographic Record Preservation by record must be carried out before the demolition of Tin Tak Heroes Temple, Mai Po Lung Vegetable Marketing Co-operative Society Ltd. and Sun Tin Vegetable Marketing Co- operative Society Ltd A comprehensive record through 3D scanning, video recording and cartographic and photographic recording should be conducted by the project proponent of subsequent developer(s) prior to any construction works. A copy of these records should be provided to Antiquities and Monuments Office (AMO) for record purpose and future use, such as research, exhibition and educational programmes.	Construction sites / Construction Phase	Contractor		1		EIAO-TM Guidance Note on Assessment of Impact on Sites of Cultural Heritage in Environmental Impact Assessment Studies (GCH-EIA) Hong Kong Planning Standards and Guidelines (HKPSG) Guidelines for Cultural Heritage Impact Assessment (GCHIA)
12.5.4.2- 12.5.4.7	DP1 of EIA Report, Non- DPs	Monitoring of ground-borne vibration, tilting and ground settlement Monitoring of ground-borne vibration, tilting and ground settlement, shall be employed for Entrance Gate, Enclosing Walls and Shrine, Yan Shau Wai (HBN186) during the site formation and construction phases. The monitoring should be incorporated with a set of Alert, Alarm and Action (3As) system strictly following AMO's monitoring requirements for grade 3 historic building. The actual 3As criteria should be agreed with the AMO prior to the commencement of construction	Construction sites / Construction Phase	Contractor		1		EIAO-TM Buildings Ordinance

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	S	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidennes	
		works. A monitoring proposal, including checkpoint locations, installation details, response actions to be taken when reaching each of the Alert/ Alarm/ Action (3As) levels and frequency of monitoring should be submitted to AMO and relevant stakeholder(s) for consideration before commencement of the works. Prior agreement and consent should be sought from the owner(s), stakeholder(s) and relevant Government department(s) for the installation of monitoring points before commencement of the works. Record of monitoring should be submitted regularly to AMO during the construction. AMO should be alerted in case any irregularities are observed. Monitoring of ground-borne vibration, tilting and ground settlement is also proposed to be employed for Yeung Hau Temple (San Tin) (MPT01) and Structure between No. 5 and No. 7, Shek Wu Wai (SWW01) during the site formation and construction phases. The monitoring should be incorporated with a set of Alert, Alarm and Action (3As) system strictly following the requirements set out in Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers - Ground-borne Vibrations and Ground Settlements Arising from Pile Driving and Similar Operations (PNAP APP-137) on vibration-sensitive and dilapidated buildings. If the alert level is exceeded, the monitoring frequency should be increased. If the alarm level is exceeded, the							

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		ement Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		design of the construction may have to be amended. If the action level is exceeded, all works should be stopped. The actual 3As criteria shall be further confirmed via an assessment on the effects of ground-borne vibrations, settlements and tilting on MPT01 and SWW01. Prior agreement and consent should be sought from the owner(s), stakeholder(s) and relevant Government department(s) for the installation of monitoring points on the building before commencement of the works. Record of monitoring should be submitted regularly to the Buildings Department during the construction under Buildings Ordinance. Buildings Department should be alerted in case any irregularities are observed. Seven other identified items may experience impacts of ground borne vibration, tilting and settlement, namely Gurkha Cemetery (BH03), Mans' Boundary Stone (BH06), Grave of Man Lun Fung ("麒麟吐玉書") (BH07), Grave of Man Chung Luen (BH08), Grave of Man Chu Shui (BH10), Grave of Mrs Man Leung (BH11) and Grave of Chong Yin Kei (BH12). With an aim to define the vibration limit and to evaluate if ground-borne vibration, tilting and ground settlement monitoring and structural strengthening measures are required during construction phase, a baseline condition survey and baseline vibration impact assessment should be conducted for these non-building structures by a qualified building surveyor or qualified structural engineer during						

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation Agent	_	lementa Stage*		Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		pre-construction stage of the proposed developments. This is to ensure the construction performance meets with the vibration standard stated in the EIA report.						
12.5.4.8- 12.5.4.9	DP1 of EIA Report, Non- DPs	Safe Access The entrance door of Yeung Hau Temple (San Tin) leads directly to the Project boundary. A safe access route shall be maintained for visitors during the construction stage. There would be a temporary change of access to Gurkha Cemetery, Grave of Man Lun Fung ("麒麟吐玉書"), Grave of Man Chung Luen, Grave of Man Chu Shui and Grave of Mrs Man Leung during the construction phase. A safe access route to these burial grounds should be maintained for conducting any mitigation measures, in particular during Ching Ming Festival, Chung Yeung Festival and Purkha Divas.	Construction sites / Construction Phase	Contractor		✓		• EIAO-TM
12.5.4.10	Non-DPs	Protective Barrier The contractors should enforce protocol to forbid any light machinery, such as handheld jackhammer, or heavy machinery to come into direct contact with Yeung Hau Temple (San Tin), which is located right next to the Project boundary. Physical protective barriers/ covers or intervention/cushioning materials, including but not limited to covering or sheltering, shall be provided during the proposed construction works to separate the works areas from the structure. No piling works shall be allowed within the	Construction sites / Construction Phase	Contractor		√		• EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		ementa Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		protective zone. No worker or any construction equipment(s) and material(s) should trespass the protective zone. The contractor should propose the actual extent of the protective zone and suitable protective covering materials to the satisfaction of AMO prior to the commencement of the proposed construction works.						
12.5.4.11	Non-DPs	<u>Dust Suppression</u> Implementation of mitigation measures in the <i>Air Pollution Control (Construction Dust) Regulation</i> , dust suppression measures and good site practice should be observed by the project proponent on Yeung Hau Temple (San Tin) and Grave of Chong Yin Kei during the construction phase.	Construction sites / Construction Phase	Project Proponent		√		EIAO-TM Air Pollution Control (Construction Dust) Regulation
12.6.7.1	DP1, DP2 of EIA Report, Non-DPs	Archaeological Watching Brief is recommended to be carried out in Shek Wu Wai Archaeologically Sensitive Area (ASA) and Mai Po Lung (South) ASA should works involve soil disturbance occurred (such as site formation) during the construction phase. The project proponent or future subsequent developer(s) should employ an archaeologist who must obtain a <i>Licence to Excavate and Search for Antiquities</i> from the Antiquities Authority prior the commencement of the fieldworks. The scope, methodology and programme of the archaeological survey shall be agreed with AMO.	Construction sites / Construction Phase	Project Proponent		√		• EIAO-TM
12.6.7.2- 12.6.7.4	DP1, DP2, DP5 of EIA	Further archaeological survey at later stages after land resumption but before site formation works is recommended for Hop Shing Wai ASA, Mai Po	Construction sites / Construction Phase	Project Proponent		√		EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	_	lement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	Des C O	O	& Guidelines
	Report, Non- DPs	ASA, Siu Hum Tsuen (West) ASA, Siu Hum Tsuen (East) ASA and Pang Loon Tei ASA. The survey shall be conducted by an archaeologist who must obtain a <i>Licence to Excavate and Search for Antiquities</i> from the Antiquities Authority prior the commencement of the fieldworks. The scope, methodology and programme of the archaeological survey shall be agreed with AMO.						
12.6.7.8	All DPs and Non-DPs	If antiquities or supposed antiquities under the Antiquities and Monuments Ordinance (Cap. 53) are discovered, the project proponent is required to inform AMO immediately for discussion of appropriate mitigation measures to be agreed by AMO before implementation by the project proponent to the satisfaction of AMO.	Construction sites / Construction Phase	Project Proponent		✓		EIAO-TM Antiquities and Monuments Ordinance
Landscape a	and Visual Impac	et		'		,	1	
Table 14.9	Non-DPs	 Provision of Wildlife corridor where appropriate and applicable (DM1) Opportunity for ecological linkage is proposed at below location 1) Between STEMDC, Ha Wan Tsuen and Lok Ma Chau should be provided for target mammal species via culvert / constructed wetland in order to prevent roadkill and guiding wildlife into the underpasses. 2) Provide ecological linkage between the various "GB" under the Revised RODP, targeting mammal species of conservation importance 	Design Construction and Operation Phase	Design stage consultant / Contractor / Operator	1	J	1	

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation		ement Stage*		Relevant Legislation
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		 Details of the proposed wildlife corridor shall be formulated in detailed design in later stages, and shall be agreed with relevant authorities (e.g. AFCD and EPD) prior to commencement of construction works. It is expected that, provision of wildlife corridor can maximise the ecological function of preserved "GB" and mitigate the habitat fragmentation impact. To enhance visual and air permeability For further details, refer to Section 10.11 of the Ecological Impact Assessment 						
Table 14.10	All DPs and Non-DPs	 Preservation of Existing Vegetation (CM1) All the existing vegetation and trees to be retained and not to be affected by the Projects shall be carefully protected during construction by means of fencing during construction stage to prevent damage to tree canopies and root zones from vehicles and storage of materials. The tree preservation and tree treatment shall be subject to the detailed design stage and in accordance with DEVB TC(W) No. 4/2020 - Tree Preservation and the latest guidelines on Tree Preservation during Development issued by GLTMS of DEVB. A detailed tree survey will be carried out for the Tree Preservation and Removal proposal (TPRP) process which will be carried out at the later detailed design stage of the Project. The detailed tree survey will propose which 	Project site / Construction Phase	Contractor	✓	✓		DEVB TC(W) No. 4/2020 - Tree Preservation

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines	
	Project (DP)		Completion of Measures	Agent	Des	С	O	& datacinics	
		trees should be retained, transplanted, or removed and will include details of tree protection measures for those trees to be retained							
Table 14.10	All DPs and Non-DPs	 Transplanting of Existing Trees (CM2) Trees unavoidably affected by the works should be transplanted as far as possible in accordance with DEVB TC(W) No. 4/2020-Tree preservation and the latest Guidelines on Tree Preservation during Development issued by GLTMS of DEVB. Sufficient time should be reserved for the advanced tree transplanting preparation works to enhance the survival rate of the transplanted trees. The transplanting proposals are subject to review at the detailed design stage and to agreement-in-principle with the relevant management and maintenance agents and/or government departments. 	Project site / Construction Phase	Design stage consultant / Contractor		✓		DEVB TC(W) No. 4/2020 - Tree Preservation	
Table 14.10	All DPs and Non-DPs	Reinstatement of Temporarily Disturbed Landscape Areas (CM3) All hard and soft landscape areas disturbed. All hard and soft landscape areas disturbed temporarily during construction should be reinstated on like-to-like basis, to the satisfaction of the relevant Government Departments.	Project site / Construction Phase	Contractor		1		• EIAO-TM	
Table 14.10	All DPs and Non-DPs	Minimise Disturbance on Watercourses (CM4) The design shall minimise disturbance on watercourses, particularly for natural	Project site / Construction Phase	Contractor		√		• ETWB TCW No. 5/2005	

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		watercourse. Good site practices as described in ETWB TCW No. 5/2005 "Protection of natural streams/rivers from adverse impacts arising from construction works" shall also be adopted to avoid any pollution entering the watercourses nearby where applicable. Should temporarily or indirect disturbance on watercourse is unavoidable, it shall be reinstated to the satisfaction of relevant Government Departments.						
Table 14.10	All DPs and Non-DPs	 Minimise topographical changes (CM5) The proposed site formation works should be optimised to reduce topographical/ landform changes, as well as reduce land take and interference with natural terrain. Where there is a need to significantly cut into the existing landform, retaining walls should be considered and cut slopes should be considered to minimise landform changes and land resumption. Earthworks and engineered slopes should be designed to be a visually interesting landform, compatible with the surrounding landscape and maximise greening opportunities. 	Project site / Construction Phase	Contractor		√		• EIAO-TM
Table 14.10	All DPs and Non-DPs	Management of Construction Activities and Facilities (CM6) Management of facilities on work sites which give control on the height and disposition/arrangement of all facilities on the works site to minimise visual impact to adjacent VSRs.	Project site / Construction Phase	Contractor		√		EIAO-TM

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
Table 14.10	All DPs and Non-DPs	Control of Night-time Lighting (CM7) Control of night-time lighting glare to prevent light overspill to the nearby VSRs and into the sky. Relevant best practices as suggested in the "Charter on External Lighting" and Guidelines on Industry Best Practices for External Lighting Installations" promulgated by The Environment Bureau (ENB) shall be adopted.	Project site / Construction Phase	Contractor		√		 Charter of External Lighting issued Guidelines on Industry Best Practices for External Lighting Installations
Table 14.10	All DPs and Non-DPs	Construction of Decorative Hoarding around Construction Works (CM8) Erection of decorative screen hoarding or hoarding compatible with the surrounding setting.	Project site / Construction Phase	Contractor		√		• EIAO-TM
Table 14.10	All DPs and Non-DPs	Advance Planting of Screen Planting (CM9) Advance screen planting of fast-growing tree and shrub species to proposed development	Project site / Construction Phase	Contractor		✓		• EIAO-TM
Table 14.10	DP6, DP7 of EIA Report, Non-DPs	 Creating interface between Ponds, Wetland and the proposed Project (CM10) The 20m "landscape buffer" between STEMDC and OU(I&T) and the 35m "landscape buffer" are being proposed to create buffer between the existing and/or the development and wetland. Native tree species, shrub mix, and riparian vegetation should be incorporated in the "landscape buffer". Phasing of pond filling works in San Tin – Sam Po Shue area should be adopted. The pond filling works should be started from urbanised area towards the wetland area (i.e. from the southeast near STEMDC or San Tin 	Project site / Construction Phase	Contractor		√		• EIAO-TM

EIA Ref.	Relevance to Designated Project (DP)	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
			Completion of Measures	Agent	Des	С	0	& Guidelines
		Highway towards the northwest) and construction activities should be minimised at any one time, so as to allow gradual displacement of wildlife. It shall be conducted during wet season as far as practicable. For details of the wetland enhancement areas, please refer to Section 2 - Project description and Section 10 -Ecological Impact Assessment						
14.9.4	All DPs and Non-DPs	The following good site practice measures will also be incorporated in the construction phase of the Project: Topsoil, where identified, shall be stripped, and stored for re-use in the construction of the soft landscape works. Existing trees to be retained on site shall be carefully protected during construction.	Project site / Construction Phase	Contractor		✓		• EIAO-TM
Table 14.11	All DPs and Non-DPs	 Stepped building height profile (OM14) The building height profile shall make reference to the recommended Building Height Concept (Appendix 14.2.4) down from the south to the north to respond to the SPS WCP and the important bird flight paths adjacent to the LMC station in order to minimise negative impacts on the sensitive area. The pinnacles and building profiles of each character zone shall also respect the peak and ridge line in the backdrop. As a broad general principle, the maximum development height permitted will be reduced as they approach villages, low rise developments and open space. While high- 	Design Construction and Operation Phase	Contractor	✓	✓	✓	HKPSG Ch11- Urban Design Guidelines.

EIA Ref.	Relevance to Designated	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
	Project (DP)		Completion of Measures	Agent	Des	С	O	& Guidelines
		rise development shall be considered at mixed use development and critical pedestrian and vehicular entry. • Low rise profiles shall be adopted along ecologically sensitive areas. A stepdown approach shall be used along important bird flight paths. For further detail, refer to S14.5.17-14.5.19 and Appendix 14.2.4 of the EIA Report.						
Table 14.11	All DPs and Non-DPs	 Provision of Breezeway/ Airpaths (OM15) Provision of Breezeway/ Airpaths to ensure effective air ventilation going through the Area and to improve the micro-climate of its proposed urban environments in accordance to the HKPSG Ch11- Urban Design Guidelines. Major ones include 1) along San Tin Highway and Fanling Highway towards Kwu Tung North New Development Area to the east; 2) along proposed open space to the southeast of the proposed San Tin Station, namely Town Park. 3) along the proposed major road of Road D1 parallel to Town Park across the San Tin Town Centre (East) through the proposed open space along STEMDC, namely Riverside Park towards the low-rise education uses and Ki Lun Shan. Other breezeways are generally following the revitalised river channels – STEMDC and STWMDC, major walkways and public open space. 	Design Construction and Operation Phase	Contractor	✓	1	J	HKPSG Ch11- Urban Design Guidelines.

EIA Ref.	Relevance to Designated Project (DP)	Environmental Protection Measures	Location / Duration of Measures / Timing of	Implementation	Implementation Stage*			Relevant Legislation & Guidelines
			Completion of Measures	Agent	Des	С	O	& Guidelines
		 To enhance visual and air permeability For further details, refer S14.5.23-25 of the EIA Report. 						
Table 14.11	All DPs and Non-DPs	Provision of view corridor (OM16) View Corridor are proposed to maximise and aligned principally along major breezeways and visual connection to local landmarks and visual resources.	Design Construction and Operation Phase	Contractor	√	√	√	HKPSG Ch11- Urban Design Guidelines

^{*}Des = Design; C = Construction; O = Operation

ANNEX I

TENTATIVE SCHEDULES OF ENVIRONMENTAL MONITORING FOR FUTURE 3 MONTHS

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Tentative Noise Impact Monitoring Schedule (November 2025)

		24/09 - Tentalive Noi				
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1/Nov
- 0.	- 0 -		= 0.		- 0.1	- 0.1
2/Nov	3/Nov	4/Nov	5/Nov	6/Nov	7/Nov	8/Nov
		Ni-in-Manitania-				
		Noise Monitoring CM1, CM3, CM4				
		CM1, CM3, CM4				
0/N	40/N	44/NI	40/N	40/N	14/Nov	15/Nov
9/Nov	10/Nov	11/Nov	12/Nov	13/Nov	14/1100	15/11/07
		Noise Monitoring				
		CM1, CM3, CM4				
		CIVIT, CIVIS, CIVI4				
16/Nov	17/Nov	18/Nov	19/Nov	20/Nov	21/Nov	22/Nov
10/140	17/1400	10/1404	13/1404	20/1407	21/1404	22/1407
		Noise Monitoring				
		CM1, CM3, CM4				
23/Nov	24/Nov	25/Nov	26/Nov	27/Nov	28/Nov	29/Nov
		Noise Monitoring				
		CM1, CM3, CM4				
30/Nov	1					

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Tentative Noise Impact Monitoring Schedule (December 2025)

		24/09 - Tentative Noi				
Sunday	Monday				Friday	Saturday
	1/Dec	2/Dec	3/Dec	4/Dec	5/Dec	6/Dec
		Noise Monitoring				
		CM1, CM3, CM4				
7/Dec	8/Dec	9/Dec	10/Dec	11/Dec	12/Dec	13/Dec
1/Dec	0/Dec	3/Dec	TO/Dec	TI/Dec	12/Dec	13/Dec
		Noise Monitoring				
		CM1, CM3, CM4				
14/Dec	15/Dec	16/Dec	17/Dec	18/Dec	19/Dec	20/Dec
		Noise Monitoring				
		CM1, CM3, CM4				
		, ,				
21/Dec	22/Dec	23/Dec	24/Dec	25/Dec	26/Dec	27/Dec
2 I/Dec	ZZ/Dec	23/Dec	24/Dec	25/Dec	20/Dec	ZI/Dec
		Noise Monitoring				
		CM1, CM3, CM4				
28/Dec	29/Dec	30/Dec	31/Dec			
		Noise Monitoring				
		CM1, CM3, CM4				
		,				

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Tentative Noise Impact Monitoring Schedule (January 2026)

01				ig Scriedule (Januar)		0.4
Sunday	Monday	Tuesday	Wednesday			Saturday
				1/Jan	2/Jan	3/Jan
4/Jan	5/Jan	6/Jan	7/Jan	8/Jan	9/Jan	10/Jan
4/3411	J/Jail	0/Jail	7/Jail	0/Jail	9/Jail	TO/Jail
		Noise Monitoring				
		CM1, CM3, CM4				
11/Jan	12/Jan	13/Jan	14/Jan	15/Jan	16/Jan	17/Jan
		Noise Monitoring				
		CM1, CM3, CM4				
		CMI, CM3, CM4				
18/Jan	19/Jan	20/Jan	21/Jan	22/Jan	23/Jan	24/Jan
		Noise Monitoring				
		CM1, CM3, CM4				
25/Jan	26/Jan	27/Jan	28/Jan	29/Jan	30/Jan	31/Jan
25/Jan	26/Jan	27/Jan	28/Jan	29/Jan	30/Jan	31/Jan
		Noise Monitoring				
		CM1, CM3, CM4				
			l .			

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Tentative Water Quality Impact Monitoring Schedule (November 2025)

Sunday	Monday	Tuesday	Wednesday			Saturday
						1/Nov
						Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
2/Nov	3/Nov	4/Nov	5/Nov	6/Nov	7/Nov	8/Nov
		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
9/Nov	10/Nov	11/Nov	12/Nov	13/Nov	14/Nov	15/Nov
		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
16/Nov	17/Nov	18/Nov	19/Nov	20/Nov	21/Nov	22/Nov
		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
23/Nov	24/Nov	25/Nov	26/Nov	27/Nov	28/Nov	29/Nov
		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		Water Quality Monitoring U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
30/Nov						

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Tentative Water Quality Impact Monitoring Schedule (December 2025)

Sunday	Monday	Tuesday	Wednesday	Thursday		Saturday
Cariday						
	1/Dec	2/Dec	3/Dec	4/Dec	5/Dec	6/Dec
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
		,,,,,,,,		,,,,,,,,		,,,,,,,,
					-	-
7/Dec	8/Dec	9/Dec	10/Dec	11/Dec	12/Dec	13/Dec
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8	
	024, 020, 02, 324, 320, 320, 324, 37, 30		22a, 22c, 32, 32a, 32c, 32c, 32a, 37, 30		62a, 626, 62, 82a, 826, 826, 82a, 87, 86	
14/Dec	15/Dec	16/Dec	17/Dec	18/Dec	19/Dec	20/Dec
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
		02a, 02b, 02, B2a, B2b, B2c, B2a, B7, Bb		02a, 02b, 02, 02a, 02c, 02c, 02a, 07, 06		C2a, C2b, G2, B2a, B2b, B2c, B2a, B7, Bb
21/Dec	22/Dec	23/Dec	24/Dec	25/Dec	26/Dec	27/Dec
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8
		024, 020, 02, 324, 320, 320, 324, 37, 30		024, 020, 02, 024, 020, 020, 020, 021, 07, 00		62a, 626, 62, 82a, 826, 826, 82a, 87, 86
28/Dec	29/Dec	30/Dec	31/Dec			
	Water Quality Monitoring		Water Quality Monitoring			
	U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8			
	22., 22., 32, 32a, 32c, 32c, 32d, 37, 30		,,,,,,,			

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/09 - Tentative Water Quality Impact Monitoring Schedule (January 2026)

	ND/2024/09 - Tentative Water Quality Impact Monitoring Schedule (January 2026)						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
				1/Jan	2/Jan	3/Jan	
					Water Quality Monitoring		
					U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		
4/Jan	5/Jan	6/Jan	7/Jan	8/Jan	9/Jan	10/Jan	
4/Jan	5/Jan	6/Jan	7/Jan	6/Jan	9/Jan	TO/Jan	
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring		
	U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		
11/Jan	12/Jan	13/Jan	14/Jan	15/Jan	16/Jan	17/Jan	
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8	
18/Jan	19/Jan	20/Jan	21/Jan	22/Jan	23/Jan	24/Jan	
10/5411	13/0411	20/04/1	21/0411	22/04/1	25/5411	24/04/1	
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8	
25/Jan	26/Jan	27/Jan	28/Jan	29/Jan	30/Jan	31/Jan	
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring		
	U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		U2a, U2b', G2, D2a, D2b', D2c, D2d, D7, D8		

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Tentative Noise Impact Monitoring Schedule (November 2025)

			se impact Monitoring	3 Schedule (Novemb	ei 2023)	
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1/Nov
2/Nov	3/Nov	4/Nov	5/Nov	6/Nov	7/Nov	8/Nov
2/1100	3/1107	4/1100	3/1107	0/1107	7/INOV	8/1101
	Noise Monitoring					
	CM9, CM10, CM11					
	-, -,					
9/Nov	10/Nov	11/Nov	12/Nov	13/Nov	14/Nov	15/Nov
	-					-
	Noise Monitoring					
	CM9, CM10, CM11					
16/Nov	17/Nov	18/Nov	19/Nov	20/Nov	21/Nov	22/Nov
	Noise Monitoring					
	CM9, CM10, CM11					
00/11	0.4/0.1	05/11	00/11	07/11	00/11	20.11
23/Nov	24/Nov	25/Nov	26/Nov	27/Nov	28/Nov	29/Nov
	V · V · ·					
	Noise Monitoring CM9, CM10, CM11					
	Civi7, Civi10, Civi11					
30/Nov						
30/100						

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Tentative Noise Impact Monitoring Schedule (December 2025)

Conde		24/10 - Tellialive NOS				Caturday
Sunday	Monday					Saturday
	1/Dec	2/Dec	3/Dec	4/Dec	5/Dec	6/Dec
	Noise Monitoring					
	CM9, CM10, CM11					
7/Dec	8/Dec	9/Dec	10/Dec	11/Dec	12/Dec	13/Dec
	Noise Monitoring					
	CM9, CM10, CM11					
14/Dec	15/Dec	16/Dec	17/Dec	18/Dec	19/Dec	20/Dec
14/200	10/200	10/200	177200	10/1000	15/1500	20/000
	N . M					
	Noise Monitoring CM9, CM10, CM11					
	CIVITY, CIVITO, CIVITT					
2.175	00/17	20/7	2.17	0.7.17	00/17	0.7.17
21/Dec	22/Dec	23/Dec	24/Dec	25/Dec	26/Dec	27/Dec
	Noise Monitoring					
	CM9, CM10, CM11					
28/Dec	29/Dec	30/Dec	31/Dec			
	Noise Monitoring					
	CM9, CM10, CM11					

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Tentative Noise Impact Monitoring Schedule (January 2026)

			oise Impact Monitorir	<u>ig Schedule (Januar</u>	y 2026)	
Sunday	Monday	Tuesday	Wednesday			Saturday
				1/Jan	2/Jan	3/Jan
4/Jan	5/Jan	6/Jan	7/Jan	8/Jan	9/Jan	10/Jan
	Noise Monitoring					
	CM9, CM10, CM11					
11/Jan	12/Jan	13/Jan	14/Jan	15/Jan	16/Jan	17/Jan
	Noise Monitoring					
	CM9, CM10, CM11					
18/Jan	19/Jan	20/Jan	21/Jan	22/Jan	23/Jan	24/Jan
	Noise Monitoring					
	CM9, CM10, CM11					
05/1	00/1	07/1	00/1	00/1	00/1	24/1
25/Jan	26/Jan	27/Jan	28/Jan	29/Jan	30/Jan	31/Jan
	Noise Monitoring					
	CM9, CM10, CM11					

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Tentative Water Quality Impact Monitoring Schedule (November 2025)

Sunday	Monday	Tuesday	Wednesday			Saturday
						1/Nov
						WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'
2/Nov	3/Nov	4/Nov	5/Nov	6/Nov	7/Nov	8/Nov
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
9/Nov	10/Nov	11/Nov	12/Nov	13/Nov	14/Nov	15/Nov
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
16/Nov	17/Nov	18/Nov	19/Nov	20/Nov	21/Nov	22/Nov
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
23/Nov	24/Nov	25/Nov	26/Nov	27/Nov	28/Nov	29/Nov
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
30/Nov						

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Tentative Water Quality Impact Monitoring Schedule (December 2025)

Sunday	Monday		Wednesday	Thursday		Saturday
	1/Dec	2/Dec	3/Dec	4/Dec	5/Dec	6/Dec
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
7/Dec	8/Dec	9/Dec	10/Dec	11/Dec	12/Dec	13/Dec
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
14/Dec	15/Dec	16/Dec	17/Dec	18/Dec	19/Dec	20/Dec
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
21/Dec	22/Dec	23/Dec	24/Dec	25/Dec	26/Dec	27/Dec
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
28/Dec	29/Dec	30/Dec	31/Dec			
	WQ Monitoring DI', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'			

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

ND/2024/10 - Tentative Water Quality Impact Monitoring Schedule (January 2026)

Sunday	Monday	Tuesday	Wednesday	Thursday		Saturday
				1/Jan	2/Jan	3/Jan
					WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
4/Jan	5/Jan	6/Jan	7/Jan	8/Jan	9/Jan	10/Jan
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
11/Jan	12/Jan	13/Jan	14/Jan	15/Jan	16/Jan	17/Jan
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
18/Jan	19/Jan	20/Jan	21/Jan	22/Jan	23/Jan	24/Jan
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	
25/Jan	26/Jan	27/Jan	28/Jan	29/Jan	30/Jan	31/Jan
	WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'		WQ Monitoring D1', G1a, G1b, G1c, G1d, U1a, U1b/U1b'	

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

Tentative Ecological Monitoring Schedule (November 2025)

Sunday	Monday		Wednesday		Friday	Saturday
Sunday	Monday	Tuesuay	Weunesday	Thursday	riluay	1/Nov
2/Nov	3/Nov	4/Nov	5/Nov	6/Nov	7/Nov	8/Nov
2,1101	3/1407	4/1407	3/1404	O/140V	771404	C/14GV
9/Nov	10/Nov	11/Nov	12/Nov	13/Nov	14/Nov	15/Nov
3/1407	TO/NOV	11/1100	12/1100	13/1107	14/1100	13/100
16/Nov	17/Nov	18/Nov	19/Nov	20/Nov	21/Nov	22/Nov
10/1407	17/1100	18/1100	19/1100	20/1107	2 1/1100	ZZ/NOV
				Night Roost Monitoring (Pre-construction		
				Phase) - Ha Wan Tsuen		
23/Nov	24/Nov	25/Nov	26/Nov	27/Nov	28/Nov	29/Nov
23/1407	24/1100	25/1100	20/1100	27/1100	26/1107	29/100
				Night Roost Monitoring (Pre-construction		
				Phase) - San Tin Open Storage Area		
30/Nov						
30/1407						

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

Tentative Ecological Monitoring Schedule (December 2025)

			ical Monitoring Concadi			
Sunday	Monday		Wednesday			Saturday
	1/Dec	2/Dec	3/Dec	4/Dec	5/Dec	6/Dec
				Pre-construction Survey for Eurasian Otter	Pre-construction Survey for Eurasian Otter	
7/Dec	8/Dec	9/Dec	10/Dec	11/Dec	12/Dec	13/Dec
	Transect Survey (Day) Freshwater Communities Survey (Day)		Transect Survey (Night) Freshwater Communities Survey (Night)			Bird Count Survey Transect Survey (Day)
14/Dec	15/Dec	16/Dec	17/Dec	18/Dec	19/Dec	20/Dec
		Night Roost Monitoring (Pre-construction Phase) - Ha Wan Tsuen				Bird Count Survey
21/Dec	22/Dec	23/Dec	24/Dec	25/Dec	26/Dec	27/Dec
		Night Roost Monitoring (Pre-construction Phase) - San Tin Open Storage Area	Transect Survey (Night)			
28/Dec	29/Dec	30/Dec	31/Dec			

Environmental Team for San Tin Technopole Phase 1 Development (2025-2031) - Design and Construction

Tentative Ecological Monitoring Schedule (January 2026)

Sunday	Monday		Wednesday		Friday	Saturday
				1/Jan	2/Jan	3/Jan
4/Jan	5/Jan	6/Jan	7/Jan	8/Jan	9/Jan	10/Jan
	Pre-construction Survey for Eurasian Otter	Pre-construction Survey for Eurasian Otter			Transect Survey (Night) Freshwater Communities Survey (Night)	Bird Count Survey Transect Survey (Day)
					Preshwater Communities 3th vey (Night)	Transect Survey (Day)
11/Jan	12/Jan	13/Jan	14/Jan	15/Jan	16/Jan	17/Jan
		Transect Survey (Day) Freshwater Communities Survey (Day)			Night Roost Monitoring (Pre-construction Phase) - Ha Wan Tsuen	Bird Count Survey
		Treshwater Communities Survey (Day)			riase) - Ha Wali Tsucii	
18/Jan	19/Jan	20/Jan	21/Jan	22/Jan	23/Jan	24/Jan
		Night Roost Monitoring (Pre-construction Phase) - San Tin Open Storage Area	Transect Survey (Night)			
25/Jan	26/Jan	27/Jan	28/Jan	29/Jan	30/Jan	31/Jan

ANNEX J

STATUS OF EP SUBMISSIONS

ANNEX J EP SUBMISSIONS

RELEVANT SUBMISSIONS FOR EP-640/2024 (SAN TIN/LOK MA CHAU WATER RECLAMATION PLANT)

EP Condition	Relevant Requirement/ Submission	Phase	Required Timeframe	Submission Status
2.1	Establishment of Environmental Team (ET)	Before commencement of construction	No later than 2 months before the commencement of construction of corresponding parts of the Project	Established on 04 June 2025
2.6	Employment of Independent Environmental Checker (IEC)	Before commencement of construction	No later than 2 months before the commencement of construction of corresponding parts of the Project	Established on 13 June 2025
2.10	EP Submission Schedule	Before commencement of construction	No later than 1 month before the commencement of construction of the Project	Submitted to EPD on 13 August 2025
2.11	Management Organization	Before commencement of construction	No later than 1 month before the commencement of construction of the Project	Submitted to EPD on 28 August 2025
2.12	Construction Noise Management Plan (CNMP)	Before commencement of construction	No later than 2 months before the commencement of construction of the Project	Submitted to EPD on 28 July 2025, EPD comments received on 26 August 2025
2.14	Landscape and Visual Mitigation Plan(s) (LVMP(s))	Before commencement of construction	No later than 2 months before the implementation of the corresponding parts of landscape and visual mitigation measures of the Project	N/A
2.15	Tree Compensatory Planting Implementation Plan (TCPP) for DP3 (Water Reclamation Plant)	Before commencement of construction	No later than 2 months before the commencement of construction of corresponding parts of the Project involving tree felling works	Submitted to EPD on 8 September 2025
2.16	Supplementary Contamination Assessment(s) / Contamination Assessment Report(s) / Remediation Action Plan(s)	Before commencement of construction	No later than 2 months before the commencement of site investigation (SI) at the concerned facilities/areas	N/A

EP Condition	Relevant Requirement/ Submission	Phase	Required Timeframe	Submission Status
2.18	Commissioning Test Plan	Before operation	No later than 6 months before the commencement of operation of the Project	N/A
2.19	Commissioning Test Report	Before operation	No later than 1 month before the commencement of operation of the Project	N/A
3.3	Baseline Noise Monitoring Report	Before commencement of construction	At least 2 weeks before the commencement of construction of corresponding parts of the Project	Resubmitted to EPD on 27 October 2025
	Baseline Water Quality Monitoring Report			Submitted to EPD on 15 September 2025
3.4	Monthly EM&A Reports	During construction	Within 10 working days after the end of the reporting month	Submitted by ET monthly
4.2	Dedicated Internet Website	During construction	Within 4 weeks after the commencement of construction of the Project	CEDD notified EPD a dedicated internet website will setup for the environmental monitoring data and project information on 30 October 2025.

RELEVANT SUBMISSIONS FOR EP-641/2024 (SAN TIN/LOK MA CHAU EFFLUENT POLISHING PLANT)

EP Condition	Relevant Requirement/ Submission	Phase	Required Timeframe	Submission Status
2.1	Establishment of Environmental Team (ET)	Before commencement of construction	No later than 2 months before the commencement of construction of corresponding parts of the Project	Established on 04 June 2025
2.6	Employment of Independent Environmental Checker (IEC)	Before commencement of construction	No later than 2 months before the commencement of construction of corresponding parts of the Project	Established on 13 June 2025

EP Condition	Relevant Requirement/ Submission	Phase	Required Timeframe	Submission Status	
2.10	EP Submission Schedule	Before commencement of construction	No later than 1 month before the commencement of construction of the Project	Submitted to EPD on 13 August 2025	
2.11	Management Organization	Before commencement of construction	No later than 1 month before the commencement of construction of the Project	Submitted to EPD on 28 August 2025	
2.12	Construction Noise Management Plan (CNMP)	Before commencement of construction	No later than 2 months before the commencement of construction of the Project	Submitted to EPD on 28 July 2025, EPD comments received on 26 August 2025	
2.14	Landscape and Visual Mitigation Plan(s) (LVMP(s))	Before commencement of construction	No later than 2 months before the implementation of the corresponding parts of landscape and visual mitigation measures of the Project	N/A	
2.15	Tree Compensatory Planting Implementation Plan (TCPP) for DP2 (Effluent Polishing Plant)	Before commencement of construction	No later than 2 months before the commencement of construction of corresponding parts of the Project involving tree felling works	Submitted to EPD on 28 July 2025	
2.16	Supplementary Contamination Assessment(s) / Contamination Assessment Report(s) / Remediation Action Plan(s)	Before commencement of construction	No later than 2 months before the commencement of site investigation (SI) at the concerned facilities/areas	N/A	
2.17	Archaeological Survey	Before commencement of construction	Within 2 months after completion of archaeological survey	N/A	
2.18	Archaeological Watching Brief Reports	Before commencement of construction	Within 2 months after completion of archaeological work	N/A	
2.20	Commissioning Test Plan	Before operation	No later than 6 months before the commencement of operation of the Project	N/A	
2.21	Commissioning Test Report	Before operation	No later than 1 month before the commencement of operation of the Project	N/A	

EP Condition	Relevant Requirement/ Submission	Phase	Required Timeframe	Submission Status
2.22	Operation Phase Water Quality Contingency and Response Plan	Before operation	No later than 6 months before the commencement of operation of the Project	N/A
3.3	Baseline Noise Monitoring Report	Before commencement of construction	At least 2 weeks before the commencement of construction of corresponding parts of the Project	Resubmitted to EPD on 27 October 2025
	Baseline Water Quality Monitoring Report	Before commencement of construction	At least 2 weeks before the commencement of construction of corresponding parts of the Project	Submitted to EPD on 15 September 2025
3.4	Monthly EM&A Reports	During construction	Within 10 working days after the end of the reporting month	Submitted by ET monthly
4.2	Dedicated Internet Website	During construction	Within 4 weeks after the commencement of construction of the Project	CEDD notified EPD a dedicated internet website will setup for the environmental monitoring data and project information on 30 October 2025.

ERM HAS OVER 160 OFFICES ACROSS THE FOLLOWING COUNTRIES AND TERRITORIES WORLDWIDE

Argentina The Netherlands

Australia New Zealand

Belgium Peru

Brazil Poland

Canada Portugal

China Puerto Rico

Colombia Romania

France Senegal

Germany Singapore

Ghana South Africa

Guyana South Korea

Spain

Taiwan

Tanzania

Thailand

Vietnam

UAE

UK

US

Switzerland

Hong Kong Special

Administrative Region,

China

India

Indonesia

Ireland

Italy

Japan

Kazakhstan

Kenya

Malaysia

Mexico

Mozambique

ERM-Hong Kong, Limited

2507, 25/F, One Harbourfront

18 Tak Fung Street Hunghom, Kowloon

Hong Kong

T: +852 2271 3000

F: +852 3015 8052

www.erm.com

